Acceleration (differential geometry)

In mathematics and physics, acceleration is the rate of change of velocity of a curve with respect to a given linear connection. This operation provides us with a measure of the rate and direction of the "bend".

Formal definition

Let be given a differentiable manifold , considered as spacetime (not only space), with a connection . Let be a curve in with tangent vector, i.e. (spacetime) velocity, , with parameter .

The (spacetime) acceleration vector of is defined by , where denotes the covariant derivative associated to .

It is a covariant derivative along , and it is often denoted by

With respect to an arbitrary coordinate system , and with being the components of the connection (i.e., covariant derivative ) relative to this coordinate system, defined by

for the acceleration vector field one gets:

where is the local expression for the path , and .

The concept of acceleration is a covariant derivative concept. In other words, in order to define acceleration an additional structure on must be given.

Using abstract index notation, the acceleration of a given curve with unit tangent vector is given by .

See also

Notes

References

  • Friedman, M. (1983). Foundations of Space-Time Theories. Princeton: Princeton University Press. ISBN 0-691-07239-6.
  • Dillen, F. J. E.; Verstraelen, L.C.A. (2000). Handbook of Differential Geometry. Vol. 1. Amsterdam: North-Holland. ISBN 0-444-82240-2.
  • Pfister, Herbert; King, Markus (2015). Inertia and Gravitation. The Fundamental Nature and Structure of Space-Time. Vol. The Lecture Notes in Physics. Volume 897. Heidelberg: Springer. doi:10.1007/978-3-319-15036-9. ISBN 978-3-319-15035-2.
Uses material from the Wikipedia article Acceleration (differential geometry), released under the CC BY-SA 4.0 license.