Non-linear second-order differential equation
Sine oscillations F = 0.01In the study of dynamical systems , the Biryukov equation (or Biryukov oscillator ), named after Vadim Biryukov (1946), is a non-linear second-order differential equation used to model damped oscillators .
The equation is given by d 2 y d t 2 + f ( y ) d y d t + y = 0 , ( 1 ) {\displaystyle {\frac {d^{2}y}{dt^{2}}}+f(y){\frac {dy}{dt}}+y=0,\qquad \qquad (1)}
where ƒ (y ) is a piecewise constant function which is positive, except for small y as
f ( y ) = { − F , | y | ≤ Y 0 ; F , | y | > Y 0 . F = const. > 0 , Y 0 = const. > 0. {\displaystyle {\begin{aligned}&f(y)={\begin{cases}-F,&|y|\leq Y_{0};\\[4pt]F,&|y|>Y_{0}.\end{cases}}\\[6pt]&F={\text{const.}}>0,\quad Y_{0}={\text{const.}}>0.\end{aligned}}}
Eq. (1) is a special case of the Lienard equation ; it describes the auto-oscillations.
Solution (1) at separate time intervals when f(y) is constant is given by
y k ( t ) = A 1 , k exp ( s 1 , k t ) + A 2 , k exp ( s 2 , k t ) ( 2 ) {\displaystyle y_{k}(t)=A_{1,k}\exp(s_{1,k}t)+A_{2,k}\exp(s_{2,k}t)\qquad \qquad (2)}
where exp denotes the exponential function . Here s k = { F 2 ∓ ( F 2 ) 2 − 1 , | y | < Y 0 ; − F 2 ∓ ( F 2 ) 2 − 1 otherwise. {\displaystyle s_{k}={\begin{cases}\displaystyle {\frac {F}{2}}\mp {\sqrt {\left({\frac {F}{2}}\right)^{2}-1}},&|y|<Y_{0};\\[2pt]\displaystyle -{\frac {F}{2}}\mp {\sqrt {\left({\frac {F}{2}}\right)^{2}-1}}&{\text{otherwise.}}\end{cases}}} Expression (2) can be used for real and complex values of sk .
The first half-period’s solution at y ( 0 ) = ± Y 0 {\displaystyle y(0)=\pm Y_{0}} is
Relaxation oscillations F = 4 y ( t ) = { y 1 ( t ) , 0 ≤ t < T 0 ; y 2 ( t ) , T 0 ≤ t < T 2 . y 1 ( t ) = A 1 , k ⋅ exp ( s 1 , k t ) + A 2 , k ⋅ exp ( s 2 , k t ) , y 2 ( t ) = A 3 , k ⋅ exp ( s 3 , k t ) + A 4 , k ⋅ exp ( s 4 , k t ) . {\displaystyle {\begin{aligned}y(t)&={\begin{cases}y_{1}(t),&0\leq t<T_{0};\\[4pt]y_{2}(t),&\displaystyle T_{0}\leq t<{\frac {T}{2}}.\end{cases}}\\[4pt]y_{1}(t)&=A_{1,k}\cdot \exp(s_{1,k}t)+A_{2,k}\cdot \exp(s_{2,k}t),\\[2pt]y_{2}(t)&=A_{3,k}\cdot \exp(s_{3,k}t)+A_{4,k}\cdot \exp(s_{4,k}t).\end{aligned}}}
The second half-period’s solution is
y ( t ) = { − y 1 ( t − T 2 ) , T 2 ≤ t < T 2 + T 0 ; − y 2 ( t − T 2 ) , T 2 + T 0 ≤ t < T . {\displaystyle y(t)={\begin{cases}\displaystyle -y_{1}\left(t-{\frac {T}{2}}\right),&\displaystyle {\frac {T}{2}}\leq t<{\frac {T}{2}}+T_{0};\\[4pt]\displaystyle -y_{2}\left(t-{\frac {T}{2}}\right),&\displaystyle {\frac {T}{2}}+T_{0}\leq t<T.\end{cases}}}
The solution contains four constants of integration A 1 , A 2 , A 3 , A 4 , the period T and the boundary T 0 between y 1 (t ) and y 2 (t ) needs to be found. A boundary condition is derived from the continuity of y (t ) and dy /dt .
Solution of (1) in the stationary mode thus is obtained by solving a system of algebraic equations as
y 1 ( 0 ) = − Y 0 y 1 ( T 0 ) = Y 0 y 2 ( T 0 ) = Y 0 y 2 ( T 2 ) = Y 0 d y 1 d t | T 0 = d y 2 d t | T 0 d y 1 d t | 0 = − d y 2 d t | T 2 {\displaystyle {\begin{array}{ll}&y_{1}(0)=-Y_{0}&y_{1}(T_{0})=Y_{0}\\[6pt]&y_{2}(T_{0})=Y_{0}&y_{2}\!\left({\tfrac {T}{2}}\right)=Y_{0}\\[6pt]&\displaystyle \left.{\frac {dy_{1}}{dt}}\right|_{T_{0}}=\left.{\frac {dy_{2}}{dt}}\right|_{T_{0}}\qquad &\displaystyle \left.{\frac {dy_{1}}{dt}}\right|_{0}=-\left.{\frac {dy_{2}}{dt}}\right|_{\frac {T}{2}}\end{array}}}
The integration constants are obtained by the Levenberg–Marquardt algorithm . With f ( y ) = μ ( − 1 + y 2 ) {\displaystyle f(y)=\mu (-1+y^{2})} , μ = const. > 0 , {\displaystyle \mu ={\text{const.}}>0,} Eq. (1) named Van der Pol oscillator . Its solution cannot be expressed by elementary functions in closed form.
References