Suppose that a random variable has a uniform distribution on a unit sphere. What is its conditional distribution on a great circle? Because of the symmetry of the sphere, one might expect that the distribution is uniform and independent of the choice of coordinates. However, two analyses give contradictory results. First, note that choosing a point uniformly on the sphere is equivalent to choosing the longitudeuniformly from and choosing the latitudefrom with density . Then we can look at two different great circles:
If the coordinates are chosen so that the great circle is an equator (latitude ), the conditional density for a longitude defined on the interval is
If the great circle is a line of longitude with , the conditional density for on the interval is
One distribution is uniform on the circle, the other is not. Yet both seem to be referring to the same great circle in different coordinate systems.
Explanation and implications
In case (1) above, the conditional probability that the longitude λ lies in a set E given that φ = 0 can be written P(λ ∈ E | φ = 0). Elementary probability theory suggests this can be computed as P(λ ∈ E and φ = 0)/P(φ = 0), but that expression is not well-defined since P(φ = 0) = 0. Measure theory provides a way to define a conditional probability, using the limit of events Rab = {φ : a < φ < b} which are horizontal rings (curved surface zones of spherical segments) consisting of all points with latitude between a and b.
The resolution of the paradox is to notice that in case (2), P(φ ∈ F | λ = 0) is defined using a limit of the events Lcd = {λ : c < λ < d}, which are lunes (vertical wedges), consisting of all points whose longitude varies between c and d. So although P(λ ∈ E | φ = 0) and P(φ ∈ F | λ = 0) each provide a probability distribution on a great circle, one of them is defined using limits of rings, and the other using limits of lunes. Since rings and lunes have different shapes, it should be less surprising that P(λ ∈ E | φ = 0) and P(φ ∈ F | λ = 0) have different distributions.
Mathematical explication
Measure theoretic perspective
To understand the problem we need to recognize that a distribution on a continuous random variable is described by a density f only with respect to some measure μ. Both are important for the full description of the probability distribution. Or, equivalently, we need to fully define the space on which we want to define f.
Let Φ and Λ denote two random variables taking values in Ω1 = respectively Ω2 = [−π, π]. An event {Φ = φ, Λ = λ} gives a point on the sphere S(r) with radius r. We define the coordinate transform
Furthermore, if either φ or λ is fixed, we get the volume elements
Let
denote the joint measure on , which has a density with respect to and let
If we assume that the density is uniform, then
Hence, has a uniform density with respect to but not with respect to the Lebesgue measure. On the other hand, has a uniform density with respect to and the Lebesgue measure.
Proof of contradiction
Consider a random vector that is uniformly distributed on the unit sphere .
For simplicity, we won't calculate the full conditional distribution on a great circle, only the probability that the random vector lies in the first octant. That is to say, we will attempt to calculate the conditional probability with
We attempt to evaluate the conditional probability as a limit of conditioning on the events
As and are independent, so are the events and , therefore
Now we repeat the process with a different parametrization of the sphere: