Chevalley restriction theorem

In the mathematical theory of Lie groups, the Chevalley restriction theorem describes functions on a Lie algebra which are invariant under the action of a Lie group in terms of functions on a Cartan subalgebra.

Statement

Chevalley's theorem requires the following notation:

Chevalley's theorem asserts that the restriction of polynomial functions induces an isomorphism

.

Proofs

Humphreys (1980) gives a proof using properties of representations of highest weight. Chriss & Ginzburg (2010) give a proof of Chevalley's theorem exploiting the geometric properties of the map .

References

  • Chriss, Neil; Ginzburg, Victor (2010), Representation theory and complex geometry., Birkhäuser, doi:10.1007/978-0-8176-4938-8, ISBN 978-0-8176-4937-1, S2CID 14890248, Zbl 1185.22001
  • Humphreys, James E. (1980), Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer, Zbl 0447.17002
Uses material from the Wikipedia article Chevalley restriction theorem, released under the CC BY-SA 4.0 license.