Chevalley restriction theorem
In the mathematical theory of Lie groups, the Chevalley restriction theorem describes functions on a Lie algebra which are invariant under the action of a Lie group in terms of functions on a Cartan subalgebra.
Statement
Chevalley's theorem requires the following notation:
Chevalley's theorem asserts that the restriction of polynomial functions induces an isomorphism
- .
Proofs
Humphreys (1980) gives a proof using properties of representations of highest weight. Chriss & Ginzburg (2010) give a proof of Chevalley's theorem exploiting the geometric properties of the map .
References
- Chriss, Neil; Ginzburg, Victor (2010), Representation theory and complex geometry., Birkhäuser, doi:10.1007/978-0-8176-4938-8, ISBN 978-0-8176-4937-1, S2CID 14890248, Zbl 1185.22001
- Humphreys, James E. (1980), Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer, Zbl 0447.17002