Continuous Bernoulli distribution

In probability theory, statistics, and machine learning, the continuous Bernoulli distribution is a family of continuous probability distributions parameterized by a single shape parameter , defined on the unit interval , by:

The continuous Bernoulli distribution arises in deep learning and computer vision, specifically in the context of variational autoencoders, for modeling the pixel intensities of natural images. As such, it defines a proper probabilistic counterpart for the commonly used binary cross entropy loss, which is often applied to continuous, -valued data. This practice amounts to ignoring the normalizing constant of the continuous Bernoulli distribution, since the binary cross entropy loss only defines a true log-likelihood for discrete, -valued data.

The continuous Bernoulli also defines an exponential family of distributions. Writing for the natural parameter, the density can be rewritten in canonical form: .

Statistical inference

Given a sample of points with , the maximum likelihood estimator of is the empirical mean,

Equivalently, the estimator for the natural parameter is the logit of ,

Bernoulli distribution

The continuous Bernoulli can be thought of as a continuous relaxation of the Bernoulli distribution, which is defined on the discrete set by the probability mass function:

where is a scalar parameter between 0 and 1. Applying this same functional form on the continuous interval results in the continuous Bernoulli probability density function, up to a normalizing constant.

Beta distribution

The Beta distribution has the density function:

which can be re-written as:

where are positive scalar parameters, and represents an arbitrary point inside the 1-simplex, . Switching the role of the parameter and the argument in this density function, we obtain:

This family is only identifiable up to the linear constraint , whence we obtain:

corresponding exactly to the continuous Bernoulli density.

Exponential distribution

An exponential distribution restricted to the unit interval is equivalent to a continuous Bernoulli distribution with appropriate[which?] parameter.

Continuous categorical distribution

The multivariate generalization of the continuous Bernoulli is called the continuous-categorical.

References

Uses material from the Wikipedia article Continuous Bernoulli distribution, released under the CC BY-SA 4.0 license.