In probability and statistics, given two stochastic processesand , the cross-covariance is a function that gives the covariance of one process with the other at pairs of time points. With the usual notation for the expectationoperator, if the processes have the mean functions and , then the cross-covariance is given by
Cross-covariance is related to the more commonly used cross-correlation of the processes in question.
In the case of two random vectors and , the cross-covariance would be a matrix (often denoted ) with entries Thus the term cross-covariance is used in order to distinguish this concept from the covariance of a random vector , which is understood to be the matrix of covariances between the scalar components of itself.
By setting (the time lag, or the amount of time by which the signal has been shifted), we may define
.
The cross-covariance function of two jointly WSS processes is therefore given by:
Eq.2
which is equivalent to
.
Uncorrelatedness
Two stochastic processes and are called uncorrelated if their covariance is zero for all times. Formally:
.
Cross-covariance of deterministic signals
The cross-covariance is also relevant in signal processing where the cross-covariance between two wide-sense stationaryrandom processes can be estimated by averaging the product of samples measured from one process and samples measured from the other (and its time shifts). The samples included in the average can be an arbitrary subset of all the samples in the signal (e.g., samples within a finite time window or a sub-sampling of one of the signals). For a large number of samples, the average converges to the true covariance.
Cross-covariance may also refer to a "deterministic" cross-covariance between two signals. This consists of summing over all time indices. For example, for discrete-time signals and the cross-covariance is defined as