CuPy
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU. CuPy supports Nvidia CUDA GPU platform, and AMD ROCm GPU platform starting in v9.0.
CuPy has been initially developed as a backend of Chainer deep learning framework, and later established as an independent project in 2017.
CuPy is a part of the NumPy ecosystem array libraries and is widely adopted to utilize GPU with Python, especially in high-performance computing environments such as Summit, Perlmutter, EULER, and ABCI.
CuPy is a NumFOCUS sponsored project.
Features
CuPy implements NumPy/SciPy-compatible APIs, as well as features to write user-defined GPU kernels or access low-level APIs.
NumPy-compatible APIs
The same set of APIs defined in the NumPy package (numpy.*
) are available under cupy.*
package.
- Multi-dimensional array (
cupy.ndarray
) for boolean, integer, float, and complex data types - Module-level functions
- Linear algebra functions
- Fast Fourier transform
- Random number generator
SciPy-compatible APIs
The same set of APIs defined in the SciPy package (scipy.*
) are available under cupyx.scipy.*
package.
- Sparse matrices (
cupyx.scipy.sparse.*_matrix
) of CSR, COO, CSC, and DIA format - Discrete Fourier transform
- Advanced linear algebra
- Multidimensional image processing
- Sparse linear algebra
- Special functions
- Signal processing
- Statistical functions
User-defined GPU kernels
- Kernel templates for element-wise and reduction operations
- Raw kernel (CUDA C/C++)
- Just-in-time transpiler (JIT)
- Kernel fusion
Distributed computing
- Distributed communication package (
cupyx.distributed
), providing collective and peer-to-peer primitives
Low-level CUDA features
- Stream and event
- Memory pool
- Profiler
- Host API binding
- CUDA Python support
Interoperability
- DLPack
- CUDA Array Interface
- NEP 13 (
__array_ufunc__
) - NEP 18 (
__array_function__
) - Array API Standard
Examples
Array creation
>>> import cupy as cp
>>> x = cp.array([1, 2, 3])
>>> x
array([1, 2, 3])
>>> y = cp.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Basic operations
>>> import cupy as cp
>>> x = cp.arange(12).reshape(3, 4).astype(cp.float32)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
>>> x.sum(axis=1)
array([ 6., 22., 38.], dtype=float32)
Raw CUDA C/C++ kernel
>>> import cupy as cp
>>> kern = cp.RawKernel(r'''
... extern "C" __global__
... void multiply_elemwise(const float* in1, const float* in2, float* out) {
... int tid = blockDim.x * blockIdx.x + threadIdx.x;
... out[tid] = in1[tid] * in2[tid];
... }
... ''', 'multiply_elemwise')
>>> in1 = cp.arange(16, dtype=cp.float32).reshape(4, 4)
>>> in2 = cp.arange(16, dtype=cp.float32).reshape(4, 4)
>>> out = cp.zeros((4, 4), dtype=cp.float32)
>>> kern((4,), (4,), (in1, in2, out)) # grid, block and arguments
>>> out
array([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.]], dtype=float32)
Applications
- spaCy
- XGBoost
- turboSETI (Berkeley SETI)
- NVIDIA RAPIDS
- einops
- scikit-learn
- MONAI
- Chainer