Dickman function

The Dickman–de Bruijn function ρ(u) plotted on a logarithmic scale. The horizontal axis is the argument u, and the vertical axis is the value of the function. The graph nearly makes a downward line on the logarithmic scale, demonstrating that the logarithm of the function is quasilinear.

In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound. It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication, which is not easily available, and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.

Definition

The Dickman–de Bruijn function is a continuous function that satisfies the delay differential equation

with initial conditions for 0 ≤ u ≤ 1.

Properties

Dickman proved that, when is fixed, we have

where is the number of y-smooth (or y-friable) integers below x.

Ramaswami later gave a rigorous proof that for fixed a, was asymptotic to , with the error bound

in big O notation.

Applications

The Dickman–de Bruijn used to calculate the probability that the largest and 2nd largest factor of x is less than x^a

The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P–1 factoring and can be useful of its own right.

It can be shown that

which is related to the estimate below.

The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.

Estimation

A first approximation might be A better estimate is

where Ei is the exponential integral and ξ is the positive root of

A simple upper bound is

Computation

For each interval [n − 1, n] with n an integer, there is an analytic function such that . For 0 ≤ u ≤ 1, . For 1 ≤ u ≤ 2, . For 2 ≤ u ≤ 3,

with Li2 the dilogarithm. Other can be calculated using infinite series.

An alternate method is computing lower and upper bounds with the trapezoidal rule; a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.

Extension

Friedlander defines a two-dimensional analog of . This function is used to estimate a function similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then

See also

References

Further reading

Uses material from the Wikipedia article Dickman function, released under the CC BY-SA 4.0 license.