In mathematics, the double Fourier sphere (DFS) method is a technique that transforms a function defined on the surface of the sphere to a function defined on a rectangular domain while preserving periodicity in both the longitude and latitude directions.
Introduction
First, a function
on the sphere is written as
using spherical coordinates, i.e.,
![{\displaystyle f(\lambda ,\theta )=f(\cos \lambda \sin \theta ,\sin \lambda \sin \theta ,\cos \theta ),(\lambda ,\theta )\in [-\pi ,\pi ]\times [0,\pi ].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/943c62468a9c362f553f76faf5960f542a27dfc2)
The function
is
-periodic in
, but not periodic in
. The periodicity in the latitude direction has been lost. To recover it, the function is "doubled up” and a related function on
is defined as
![{\displaystyle {\tilde {f}}(\lambda ,\theta )={\begin{cases}g(\lambda +\pi ,\theta ),&(\lambda ,\theta )\in [-\pi ,0]\times [0,\pi ],\\h(\lambda ,\theta ),&(\lambda ,\theta )\in [0,\pi ]\times [0,\pi ],\\g(\lambda ,-\theta ),&(\lambda ,\theta )\in [0,\pi ]\times [-\pi ,0],\\h(\lambda +\pi ,-\theta ),&(\lambda ,\theta )\in [-\pi ,0]\times [-\pi ,0],\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ac7c8ce23921906a494e2dc05bdea5ced98d4396)
where
and
for
. The new function
is
-periodic in
and
, and is constant along the lines
and
, corresponding to the poles.
The function
can be expanded into a double Fourier series

History
The DFS method was proposed by Merilees and developed further by Steven Orszag. The DFS method has been the subject of relatively few investigations since (a notable exception is Fornberg's work), perhaps due to the dominance of spherical harmonics expansions. Over the last fifteen years it has begun to be used for the computation of gravitational fields near black holes and to novel space-time spectral analysis.
References