Filtration (probability theory)

In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes.

Definition

Let be a probability space and let be an index set with a total order (often , , or a subset of ).

For every let be a sub-σ-algebra of . Then

is called a filtration, if for all . So filtrations are families of σ-algebras that are ordered non-decreasingly. If is a filtration, then is called a filtered probability space.

Example

Let be a stochastic process on the probability space . Let denote the σ-algebra generated by the random variables . Then

is a σ-algebra and is a filtration.

really is a filtration, since by definition all are σ-algebras and

This is known as the natural filtration of with respect to .

Types of filtrations

Right-continuous filtration

If is a filtration, then the corresponding right-continuous filtration is defined as

with

The filtration itself is called right-continuous if .

Complete filtration

Let be a probability space, and let

be the set of all sets that are contained within a -null set.

A filtration is called a complete filtration, if every contains . This implies is a complete measure space for every (The converse is not necessarily true.)

Augmented filtration

A filtration is called an augmented filtration if it is complete and right continuous. For every filtration there exists a smallest augmented filtration refining .

If a filtration is an augmented filtration, it is said to satisfy the usual hypotheses or the usual conditions.

See also

References

Uses material from the Wikipedia article Filtration (probability theory), released under the CC BY-SA 4.0 license.