Tensor formulation of non-relativistic physics
The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.
Takahashi et al., in 1988, began a study of Galilean symmetry, where an explicitly covariant non-relativistic field theory could be developed. The theory is constructed in the light cone of a (4,1) Minkowski space. Previously, in 1985, Duval et al. constructed a similar tensor formulation in the context of Newton–Cartan theory. Some other authors also have developed a similar Galilean tensor formalism.
Galilean manifold
The Galilei transformations are

where
stands for the three-dimensional Euclidean rotations,
is the relative velocity determining Galilean boosts, a stands for spatial translations and b, for time translations. Consider a free mass particle
; the mass shell relation is given by
.
We can then define a 5-vector,
,
with
.
Thus, we can define a scalar product of the type

where

is the metric of the space-time, and
.
Extended Galilei algebra
A five dimensional Poincaré algebra leaves the metric
invariant,
![{\displaystyle {\begin{aligned}[][P_{\mu },P_{\nu }]&=0,\\{\frac {1}{i}}~[M_{\mu \nu },P_{\rho }]&=g_{\mu \rho }P_{\nu }-g_{\nu \rho }P_{\mu },\\{\frac {1}{i}}~[M_{\mu \nu },M_{\rho \sigma }]&=g_{\mu \rho }M_{\nu \sigma }-g_{\mu \sigma }M_{\nu \rho }-g_{\nu \rho }M_{\mu \sigma }+\eta _{\nu \sigma }M_{\mu \rho },\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f622f05f9281ed47b3d653f71d5eecb2b6e4e0a8)
We can write the generators as

The non-vanishing commutation relations will then be rewritten as
![{\displaystyle {\begin{aligned}\left[J_{i},J_{j}\right]&=i\epsilon _{ijk}J_{k},\\\left[J_{i},C_{j}\right]&=i\epsilon _{ijk}C_{k},\\\left[D,K_{i}\right]&=iK_{i},\\\left[P_{4},D\right]&=iP_{4},\\\left[P_{i},K_{j}\right]&=i\delta _{ij}P_{5},\\\left[P_{4},K_{i}\right]&=iP_{i},\\\left[P_{5},D\right]&=-iP_{5},\\[4pt]\left[J_{i},K_{j}\right]&=i\epsilon _{ijk}K_{k},\\\left[K_{i},C_{j}\right]&=i\delta _{ij}D+i\epsilon _{ijk}J_{k},\\\left[C_{i},D\right]&=iC_{i},\\\left[J_{i},P_{j}\right]&=i\epsilon _{ijk}P_{k},\\\left[P_{i},C_{j}\right]&=i\delta _{ij}P_{4},\\\left[P_{5},C_{i}\right]&=iP_{i}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2110b0c56775fc2b6b6118c32481ad53f31e0e)
An important Lie subalgebra is
![{\displaystyle {\begin{aligned}[][P_{4},P_{i}]&=0\\[][P_{i},P_{j}]&=0\\[][J_{i},P_{4}]&=0\\[][K_{i},K_{j}]&=0\\\left[J_{i},J_{j}\right]&=i\epsilon _{ijk}J_{k},\\\left[J_{i},P_{j}\right]&=i\epsilon _{ijk}P_{k},\\\left[J_{i},K_{j}\right]&=i\epsilon _{ijk}K_{k},\\\left[P_{4},K_{i}\right]&=iP_{i},\\\left[P_{i},K_{j}\right]&=i\delta _{ij}P_{5},\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cee172f3d02f6219f96d96825a476030e8756494)
is the generator of time translations (Hamiltonian), Pi is the generator of spatial translations (momentum operator),
is the generator of Galilean boosts, and
stands for a generator of rotations (angular momentum operator). The generator
is a Casimir invariant and
is an additional Casimir invariant. This algebra is isomorphic to the extended Galilean Algebra in (3+1) dimensions with
, The central charge, interpreted as mass, and
.
The third Casimir invariant is given by
, where
is a 5-dimensional analog of the Pauli–Lubanski pseudovector.
Bargmann structures
In 1985 Duval, Burdet and Kunzle showed that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction. The metric used is the same as the Galilean metric but with all positive entries

This lifting is considered to be useful for non-relativistic holographic models. Gravitational models in this framework have been shown to precisely calculate the Mercury precession.
See also
References