Truncated great icosahedron

3D model of a truncated great icosahedron

In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{3,52} or t0,1{3,52} as a truncated great icosahedron.

Cartesian coordinates

Cartesian coordinates for the vertices of a truncated great icosahedron centered at the origin are all the even permutations of

where is the golden ratio. Using one verifies that all vertices are on a sphere, centered at the origin, with the radius squared equal to The edges have length 2.

This polyhedron is the truncation of the great icosahedron:

The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron.

Great stellapentakis dodecahedron

3D model of a great stellapentakis dodecahedron

The great stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great icosahedron. It has 60 intersecting triangular faces.

See also

References

Animated truncation sequence from {52, 3} to {3,52}


Uses material from the Wikipedia article Truncated great icosahedron, released under the CC BY-SA 4.0 license.