Incomplete Bessel functions

In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.

Definition

The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:

And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:

Where the new parameter defines the integral bound of the upper-incomplete form and lower-incomplete form of the modified Bessel function of the second kind:

Properties

for integer
for non-integer
for non-integer
for non-integer

Differential equations

satisfies the inhomogeneous Bessel's differential equation

Both , , and satisfy the partial differential equation

Both and satisfy the partial differential equation

Integral representations

Base on the preliminary definitions above, one would derive directly the following integral forms of , :

With the Mehler–Sonine integral expressions of and mentioned in Digital Library of Mathematical Functions,

we can further simplify to and , but the issue is not quite good since the convergence range will reduce greatly to .

References

Uses material from the Wikipedia article Incomplete Bessel functions, released under the CC BY-SA 4.0 license.