Infinite-order pentagonal tiling

In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

Symmetry

There is a half symmetry form, , seen with alternating colors:

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n).

See also

References

  • John H. Conway; Heidi Burgiel; Chaim Goodman-Strauss (2008). "Chapter 19, The Hyperbolic Archimedean Tessellations". The Symmetries of Things. ISBN 978-1-56881-220-5.
  • H. S. M. Coxeter (1999). "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. ISBN 0-486-40919-8. LCCN 99035678.
Uses material from the Wikipedia article Infinite-order pentagonal tiling, released under the CC BY-SA 4.0 license.