Inter-process communication

In computer science, interprocess communication (IPC) is the sharing of data between running processes in a computer system. Mechanisms for IPC may be provided by an operating system. Applications which use IPC are often categorized as clients and servers, where the client requests data and the server responds to client requests. Many applications are both clients and servers, as commonly seen in distributed computing.
IPC is very important to the design process for microkernels and nanokernels, which reduce the number of functionalities provided by the kernel. Those functionalities are then obtained by communicating with servers via IPC, leading to a large increase in communication when compared to a regular monolithic kernel. IPC interfaces generally encompass variable analytic framework structures. These processes ensure compatibility between the multi-vector protocols upon which IPC models rely.
An IPC mechanism is either synchronous or asynchronous. Synchronization primitives may be used to have synchronous behavior with an asynchronous IPC mechanism.
Disadvantages
Merging data from two processes can often incur significantly higher costs compared to processing the same data on a single thread, potentially by two or more orders of magnitude due to overheads such as inter-process communication and synchronization.
Approaches
Different approaches to IPC have been tailored to different software requirements, such as performance, modularity, and system circumstances such as network bandwidth and latency.
Applications
Remote procedure call interfaces
- Java's Remote Method Invocation (RMI)
- ONC RPC
- XML-RPC or SOAP
- JSON-RPC
- Message Bus (Mbus) (specified in RFC 3259) (not to be confused with M-Bus)
- .NET Remoting
- gRPC
Platform communication stack
The following are messaging, and information systems that utilize IPC mechanisms but don't implement IPC themselves:
- KDE's Desktop Communications Protocol (DCOP) – deprecated by D-Bus
- D-Bus
- OpenWrt uses ubus micro bus architecture
- MCAPI Multicore Communications API
- SIMPL The Synchronous Interprocess Messaging Project for Linux (SIMPL)
- 9P (Plan 9 Filesystem Protocol)
- Distributed Computing Environment (DCE)
- Thrift
- ZeroC's Internet Communications Engine (ICE)
- ØMQ
- Enduro/X Middleware
- YAMI4
- Enlightenment_(software) E16 uses eesh as an IPC
Operating system communication stack
The following are platform or programming language-specific APIs:
- Apple Computer's Apple events, previously known as Interapplication Communications (IAC)
- ARexx ports
- Enea's LINX for Linux (open source) and various DSP and general-purpose processors under OSE
- The Mach kernel's Mach Ports
- Microsoft's ActiveX, Component Object Model (COM), Microsoft Transaction Server (COM+), Distributed Component Object Model (DCOM), Dynamic Data Exchange (DDE), Object Linking and Embedding (OLE), anonymous pipes, named pipes, Local Procedure Call, MailSlots, Message loop, MSRPC, .NET Remoting, and Windows Communication Foundation (WCF)
- Novell's SPX
- POSIX mmap, message queues, semaphores, and shared memory
- RISC OS's messages
- Solaris Doors
- System V's message queues, semaphores, and shared memory
- Linux Transparent Inter Process Communication (TIPC)
- OpenBinder Open binder
- QNX's PPS (Persistent Publish/Subscribe) service
Distributed object models
The following are platform or programming language specific-APIs that use IPC, but do not themselves implement it:
- PHP's sessions
- Distributed Ruby
- Common Object Request Broker Architecture (CORBA)
- Electron's asynchronous IPC, shares JSON objects between a main and a renderer process
See also
- Berkeley sockets
- Computer network programming
- Communicating Sequential Processes (CSP paradigm)
- Data Distribution Service
- Database-as-IPC
- Protected procedure call