Jacobi coordinates for two-body problem; Jacobi coordinates are and with .A possible set of Jacobi coordinates for four-body problem; the Jacobi coordinates are r1, r2, r3 and the center of mass R. See Cornille.
In the theory of many-particle systems, Jacobi coordinates often are used to simplify the mathematical formulation. These coordinates are particularly common in treating polyatomic molecules and chemical reactions, and in celestial mechanics. An algorithm for generating the Jacobi coordinates for N bodies may be based upon binary trees. In words, the algorithm is described as follows:
The vector is the center of mass of all the bodies and is the relative coordinate between the particles 1 and 2:
The result one is left with is thus a system of N-1 translationally invariant coordinates and a center of mass coordinate , from iteratively reducing two-body systems within the many-body system.
This change of coordinates has associated Jacobian equal to .
If one is interested in evaluating a free energy operator in these coordinates, one obtains
In the calculations can be useful the following identity