Partial differential equations in mathematics
The Kolmogorov backward equation (KBE) (diffusion) and its adjoint sometimes known as the Kolmogorov forward equation (diffusion) are partial differential equations (PDE) that arise in the theory of continuous-time continuous-state Markov processes. Both were published by Andrey Kolmogorov in 1931. Later it was realized that the forward equation was already known to physicists under the name Fokker–Planck equation; the KBE on the other hand was new.
Informally, the Kolmogorov forward equation addresses the following problem. We have information about the state x of the system at time t (namely a probability distribution
); we want to know the probability distribution of the state at a later time
. The adjective 'forward' refers to the fact that
serves as the initial condition and the PDE is integrated forward in time (in the common case where the initial state is known exactly,
is a Dirac delta function centered on the known initial state).
The Kolmogorov backward equation on the other hand is useful when we are interested at time t in whether at a future time s the system will be in a given subset of states B, sometimes called the target set. The target is described by a given function
which is equal to 1 if state x is in the target set at time s, and zero otherwise. In other words,
, the indicator function for the set B. We want to know for every state x at time
what is the probability of ending up in the target set at time s (sometimes called the hit probability). In this case
serves as the final condition of the PDE, which is integrated backward in time, from s to t.
Kolmogorov Backward Equation
Let
be the solution of the stochastic differential equation

where
is a (possibly multi-dimensional) Brownian motion,
is the drift coefficient, and
is the diffusion coefficient. Define the transition density (or fundamental solution)
by
![{\displaystyle p(t,x;\,T,y)\;=\;{\frac {\mathbb {P} [\,X_{T}\in dy\,\mid \,X_{t}=x\,]}{dy}},\quad t<T.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0706b6a9c585b5585a66ff424610164e9ba17d25)
Then the usual Kolmogorov backward equation for
is

where
is the Dirac delta in
centered at
, and
is the infinitesimal generator of the diffusion:
![{\displaystyle A\,f(x)\;=\;\sum _{i}\,\mu _{i}(x)\,{\frac {\partial f}{\partial x_{i}}}(x)\;+\;{\frac {1}{2}}\,\sum _{i,j}\,{\bigl [}\sigma (x)\,\sigma (x)^{\mathsf {T}}{\bigr ]}_{ij}\,{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e41407c6d8f5a147d2dfe7347768b69a59339c0c)
Assume that the function
solves the boundary value problem

Let
be the solution of

where
is standard Brownian motion under the measure
. If
![{\displaystyle \int _{0}^{T}\,\mathbb {E} \!{\Bigl [}{\bigl (}\sigma (t,X_{t})\,{\frac {\partial F}{\partial x}}(t,X_{t}){\bigr )}^{2}{\Bigr ]}\,dt\;<\;\infty ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dcd9b7298615801455633bbb78f373a93fb4977d)
then
![{\displaystyle F(t,x)\;=\;\mathbb {E} \!{\bigl [}\;\Phi (X_{T})\,{\big |}\;X_{t}=x{\bigr ]}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d5a8e5b8c5c2cbf512b0185f796b3c698d1598)
Proof. Apply Itô’s formula to
for
:

Because
solves the PDE, the first integral is zero. Taking conditional expectation and using the martingale property of the Itô integral gives
![{\displaystyle \mathbb {E} \!{\bigl [}F(T,X_{T})\,{\big |}\;X_{t}=x{\bigr ]}\;=\;F(t,x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/97f91b2ced4a57337269066e3e2a18982226659f)
Substitute
to conclude
![{\displaystyle F(t,x)\;=\;\mathbb {E} \!{\bigl [}\;\Phi (X_{T})\,{\big |}\;X_{t}=x{\bigr ]}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d5a8e5b8c5c2cbf512b0185f796b3c698d1598)
Derivation of the Backward Kolmogorov Equation
We use the Feynman–Kac representation to find the PDE solved by the transition densities of solutions to SDEs. Suppose

For any set
, define
![{\displaystyle p_{B}(t,x;\,T)\;\triangleq \;\mathbb {P} \!{\bigl [}X_{T}\in B\,\mid \,X_{t}=x{\bigr ]}\;=\;\mathbb {E} \!{\bigl [}\mathbf {1} _{B}(X_{T})\,{\big |}\;X_{t}=x{\bigr ]}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b4e4e55d3e129ee3cc5433091cc31f6a3d53cea5)
By Feynman–Kac (under integrability conditions), if we take
, then

where

Assuming Lebesgue measure as the reference, write
for its measure. The transition density
is
![{\displaystyle p(t,x;\,T,y)\;\triangleq \;\lim _{B\to y}\,{\frac {1}{|B|}}\,\mathbb {P} \!{\bigl [}X_{T}\in B\,\mid \,X_{t}=x{\bigr ]}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb5449fe99bb0c92ac69dd6c645ba6055930d52)
Then

Derivation of the Forward Kolmogorov Equation
The Kolmogorov forward equation is
![{\displaystyle {\frac {\partial }{\partial T}}\,p{\bigl (}t,x;\,T,y{\bigr )}\;=\;A^{*}\!{\bigl [}p{\bigl (}t,x;\,T,y{\bigr )}{\bigr ]},\quad \lim _{T\to t}\,p(t,x;\,T,y)\;=\;\delta _{y}(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c44dc46a4d8b189e431d673b308d4b082f31b64)
For
, the Markov property implies

Differentiate both sides w.r.t.
:
![{\displaystyle 0\;=\;\int _{-\infty }^{\infty }{\Bigl [}{\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,p{\bigl (}r,z;\,T,y{\bigr )}\;+\;p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,{\frac {\partial }{\partial r}}\,p{\bigl (}r,z;\,T,y{\bigr )}{\Bigr ]}\,dz.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ec536378b45adfa45c13cf244e1901f89255d4b)
From the backward Kolmogorov equation:

Substitute into the integral:
![{\displaystyle 0\;=\;\int _{-\infty }^{\infty }{\Bigl [}{\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,p{\bigl (}r,z;\,T,y{\bigr )}\;-\;p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,A\,p{\bigl (}r,z;\,T,y{\bigr )}{\Bigr ]}\,dz.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffbc5b6d9e59e45bc9fc8ec9fe3cfd07a282ef32)
By definition of the adjoint operator
:
![{\displaystyle \int _{-\infty }^{\infty }{\bigl [}{\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\;-\;A^{*}\,p{\bigl (}t,x;\,r,z{\bigr )}{\bigr ]}\,p{\bigl (}r,z;\,T,y{\bigr )}\,dz\;=\;0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d413321abfe04fb853163889043ca3a50f26476)
Since
can be arbitrary, the bracket must vanish:
![{\displaystyle {\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\;=\;A^{*}{\bigl [}p{\bigl (}t,x;\,r,z{\bigr )}{\bigr ]}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e38127aef1300d17c55c6bb5075e3a18b97b8db)
Relabel
and
, yielding the forward Kolmogorov equation:
![{\displaystyle {\frac {\partial }{\partial T}}\,p{\bigl (}t,x;\,T,y{\bigr )}\;=\;A^{*}\!{\bigl [}p{\bigl (}t,x;\,T,y{\bigr )}{\bigr ]},\quad \lim _{T\to t}\,p(t,x;\,T,y)\;=\;\delta _{y}(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c44dc46a4d8b189e431d673b308d4b082f31b64)
Finally,
![{\displaystyle A^{*}\,g(x)\;=\;-\sum _{i}\,{\frac {\partial }{\partial x_{i}}}{\bigl [}\mu _{i}(x)\,g(x){\bigr ]}\;+\;{\frac {1}{2}}\,\sum _{i,j}\,{\frac {\partial ^{2}}{\partial x_{i}\,\partial x_{j}}}{\Bigl [}{\bigl (}\sigma (x)\,\sigma (x)^{\mathsf {T}}{\bigr )}_{ij}\,g(x){\Bigr ]}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/12c6c1abf2957357fd59f55f9cd9bc98bd4480f3)
See also
References
- Etheridge, A. (2002). A Course in Financial Calculus. Cambridge University Press.