List of named matrices

Several important classes of matrices are subsets of each other.

This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called entries. Matrices have a long history of both study and application, leading to diverse ways of classifying matrices. A first group is matrices satisfying concrete conditions of the entries, including constant matrices. Important examples include the identity matrix given by

and the zero matrix of dimension . For example:

.

Further ways of classifying matrices are according to their eigenvalues, or by imposing conditions on the product of the matrix with other matrices. Finally, many domains, both in mathematics and other sciences including physics and chemistry, have particular matrices that are applied chiefly in these areas.

Constant matrices

The list below comprises matrices whose elements are constant for any given dimension (size) of matrix. The matrix entries will be denoted aij. The table below uses the Kronecker delta δij for two integers i and j which is 1 if i = j and 0 else.

Specific patterns for entries

The following lists matrices whose entries are subject to certain conditions. Many of them apply to square matrices only, that is matrices with the same number of columns and rows. The main diagonal of a square matrix is the diagonal joining the upper left corner and the lower right one or equivalently the entries ai,i. The other diagonal is called anti-diagonal (or counter-diagonal).

Matrices satisfying some equations

A number of matrix-related notions is about properties of products or inverses of the given matrix. The matrix product of a m-by-n matrix A and a n-by-k matrix B is the m-by-k matrix C given by

This matrix product is denoted AB. Unlike the product of numbers, matrix products are not commutative, that is to say AB need not be equal to BA. A number of notions are concerned with the failure of this commutativity. An inverse of square matrix A is a matrix B (necessarily of the same dimension as A) such that AB = I. Equivalently, BA = I. An inverse need not exist. If it exists, B is uniquely determined, and is also called the inverse of A, denoted A−1.

Matrices with conditions on eigenvalues or eigenvectors

Matrices generated by specific data

Matrices used in statistics

The following matrices find their main application in statistics and probability theory.

Matrices used in graph theory

The following matrices find their main application in graph and network theory.

  • Adjacency matrix — a square matrix representing a graph, with aij non-zero if vertex i and vertex j are adjacent.
  • Biadjacency matrix — a special class of adjacency matrix that describes adjacency in bipartite graphs.
  • Degree matrix — a diagonal matrix defining the degree of each vertex in a graph.
  • Edmonds matrix — a square matrix of a bipartite graph.
  • Incidence matrix — a matrix representing a relationship between two classes of objects (usually vertices and edges in the context of graph theory).
  • Laplacian matrix — a matrix equal to the degree matrix minus the adjacency matrix for a graph, used to find the number of spanning trees in the graph.
  • Seidel adjacency matrix — a matrix similar to the usual adjacency matrix but with −1 for adjacency; +1 for nonadjacency; 0 on the diagonal.
  • Skew-adjacency matrix — an adjacency matrix in which each non-zero aij is 1 or −1, accordingly as the direction i → j matches or opposes that of an initially specified orientation.
  • Tutte matrix — a generalization of the Edmonds matrix for a balanced bipartite graph.

Matrices used in science and engineering

Specific matrices

See also

Notes

References

Uses material from the Wikipedia article List of named matrices, released under the CC BY-SA 4.0 license.