Mac Lane coherence theorem
In category theory, a branch of mathematics, Mac Lane's coherence theorem states, in the words of Saunders Mac Lane, “every diagram commutes”. But regarding a result about certain commutative diagrams, Kelly is states as follows: "no longer be seen as constituting the essence of a coherence theorem". More precisely (cf. #Counter-example), it states every formal diagram commutes, where "formal diagram" is an analog of well-formed formulae and terms in proof theory.
The theorem can be stated as a strictification result; namely, every monoidal category is monoidally equivalent to a strict monoidal category.
Counter-example
It is not reasonable to expect we can show literally every diagram commutes, due to the following example of Isbell.
Let be a skeleton of the category of sets and D a unique countable set in it; note by uniqueness. Let be the projection onto the first factor. For any functions , we have . Now, suppose the natural isomorphisms are the identity; in particular, that is the case for . Then for any , since is the identity and is natural,
- .
Since is an epimorphism, this implies . Similarly, using the projection onto the second factor, we get and so , which is absurd.
Proof
Coherence condition (Monoidal category)
In monoidal category , the following two conditions are called coherence conditions:
- Let a bifunctor called the tensor product, a natural isomorphism , called the associator:
- Also, let an identity object and has a left identity, a natural isomorphism called the left unitor:
- as well as, let has a right identity, a natural isomorphism called the right unitor:
- .
Pentagon and triangle identity
To satisfy the coherence condition, it is enough to prove just the pentagon and triangle identity, which is essentially the same as what is stated in Kelly's (1964) paper.
See also
Notes
References
Further reading
External links
- Armstrong, John (29 June 2007). "Mac Lane's Coherence Theorem". The Unapologetic Mathematician.
- Etingof, Pavel; Gelaki, Shlomo; Nikshych, Dmitri; Ostrik, Victor. "18.769, Spring 2009, Graduate Topics in Lie Theory: Tensor Categories §.Lecture 3". MIT Open Course Ware.
- "coherence theorem for monoidal categories". ncatlab.org.
- "Mac Lane's proof of the coherence theorem for monoidal categories". ncatlab.org.
- "coherence and strictification". ncatlab.org.
- "coherence and strictification for monoidal categories". ncatlab.org.
- "pentagon identity". ncatlab.org.