Tool in multivariate statistical analysis
In statistics, the Matérn covariance, also called the Matérn kernel, is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. It specifies the covariance between two measurements as a function of the distance
between the points at which they are taken. Since the covariance only depends on distances between points, it is stationary. If the distance is Euclidean distance, the Matérn covariance is also isotropic.
Definition
The Matérn covariance between measurements taken at two points separated by d distance units is given by

where
is the gamma function,
is the modified Bessel function of the second kind, and ρ and
are positive parameters of the covariance.
A Gaussian process with Matérn covariance is
times differentiable in the mean-square sense.
Spectral density
The power spectrum of a process with Matérn covariance defined on
is the (n-dimensional) Fourier transform of the Matérn covariance function (see Wiener–Khinchin theorem). Explicitly, this is given by

Simplification for specific values of ν
Simplification for ν half integer
When
, the Matérn covariance can be written as a product of an exponential and a polynomial of degree
. The modified Bessel function of a fractional order is given by Equations 10.1.9 and 10.2.15 as
.
This allows for the Matérn covariance of half-integer values of
to be expressed as

which gives:
- for
: 
- for
: 
- for
: 
The Gaussian case in the limit of infinite ν
As
, the Matérn covariance converges to the squared exponential covariance function

Taylor series at zero and spectral moments
From the basic relation satisfied by the Gamma function
and the basic relation satisfied by the Modified Bessel Function of the second

and the definition of the modified Bessel functions of the first 
the behavior for
can be obtained by the following Taylor series (when
is not an integer and bigger than 2):

When defined, the following spectral moments can be derived from the Taylor series:
![{\displaystyle {\begin{aligned}\lambda _{0}&=C_{\nu }(0)=\sigma ^{2},\\[8pt]\lambda _{2}&=-\left.{\frac {\partial ^{2}C_{\nu }(d)}{\partial d^{2}}}\right|_{d=0}={\frac {\sigma ^{2}\nu }{\rho ^{2}(\nu -1)}}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/334be9bee66901852ab7bdd81b77fb747f40d4c8)
For the case of
, similar Taylor series can be obtained:
When
is an integer limiting values should be taken, (see ).
See also
References