Minimal prime (recreational mathematics)
In recreational number theory, a minimal prime is a prime number for which there is no shorter subsequence of its digits in a given base that form a prime. In base 10 there are exactly 26 minimal primes:
- 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (sequence A071062 in the OEIS).
For example, 409 is a minimal prime because there is no prime among the shorter subsequences of the digits: 4, 0, 9, 40, 49, 09. The subsequence does not have to consist of consecutive digits, so 109 is not a minimal prime (because 19 is prime). But it does have to be in the same order; so, for example, 991 is still a minimal prime even though a subset of the digits can form the shorter prime 19 by changing the order.
Similarly, there are exactly 32 composite numbers which have no shorter composite subsequence:
- 4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70, 72, 75, 77, 111, 117, 171, 371, 711, 713, 731 (sequence A071070 in the OEIS).
There are 146 primes congruent to 1 mod 4 which have no shorter prime congruent to 1 mod 4 subsequence:
- 5, 13, 17, 29, 37, 41, 61, 73, 89, 97, 101, 109, 149, 181, 233, 277, 281, 349, 409, 433, 449, 677, 701, 709, 769, 821, 877, 881, 1669, 2221, 3001, 3121, 3169, 3221, 3301, 3833, 4969, 4993, 6469, 6833, 6949, 7121, 7477, 7949, 9001, 9049, 9221, 9649, 9833, 9901, 9949, ... (sequence A111055 in the OEIS)
There are 113 primes congruent to 3 mod 4 which have no shorter prime congruent to 3 mod 4 subsequence:
- 3, 7, 11, 19, 59, 251, 491, 499, 691, 991, 2099, 2699, 2999, 4051, 4451, 4651, 5051, 5651, 5851, 6299, 6451, 6551, 6899, 8291, 8699, 8951, 8999, 9551, 9851, ... (sequence A111056 in the OEIS)
Other bases
Minimal primes can be generalized to other bases. It can be shown that there are only a finite number of minimal primes in every base. Equivalently, every sufficiently large prime contains a shorter subsequence that forms a prime.
The base 12 minimal primes written in base 10 are listed in OEIS: A110600.
Number of minimal (probable) primes in base n are
- 1, 2, 3, 3, 8, 7, 9, 15, 12, 26, 152, 17, 228, 240, 100, 483, 1280, 50, 3463, 651, 2601, 1242, 6021, 306, (17608 or 17609), 5664, 17215, 5784, (57296 or 57297), 220, ...
The length of the largest minimal (probable) prime in base n are
- 2, 2, 3, 2, 5, 5, 5, 9, 4, 8, 45, 8, 32021, 86, 107, 3545, (≥111334), 33, (≥110986), 449, (≥479150), 764, 800874, 100, (≥136967), (≥8773), (≥109006), (≥94538), (≥174240), 1024, ...
Largest minimal (probable) prime in base n (written in base 10) are
- 2, 3, 13, 5, 3121, 5209, 2801, 76695841, 811, 66600049, 29156193474041220857161146715104735751776055777, 388177921, ... (next term has 35670 digits) (sequence A326609 in the OEIS)
Number of minimal composites in base n are
- 1, 3, 4, 9, 10, 19, 18, 26, 28, 32, 32, 46, 43, 52, 54, 60, 60, 95, 77, 87, 90, 94, 97, 137, 117, 111, 115, 131, 123, 207, ...
The length of the largest minimal composite in base n are
- 4, 4, 3, 3, 3, 4, 3, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, ...
Notes
References
- Chris Caldwell, The Prime Glossary: minimal prime, from the Prime Pages
- A research of minimal primes in bases 2 to 30
- Minimal primes and unsolved families in bases 2 to 30
- Minimal primes and unsolved families in bases 28 to 50
- J. Shallit, Minimal primes, Journal of Recreational Mathematics, 30:2, pp. 113–117, 1999-2000.
- PRP records, search by form 8*13^n+183 (primes of the form 8{0}111 in base 13), n=32020
- PRP records, search by form (51*21^n-1243)/4 (primes of the form C{F}0K in base 21), n=479149
- PRP records, search by form (106*23^n-7)/11 (primes of the form 9{E} in base 23), n=800873