Mathematical constant
In mathematics , the natural logarithm of 2 is the unique real number argument such that the exponential function equals two. It appears frequently in various formulas and is also given by the alternating harmonic series . The decimal value of the natural logarithm of 2 (sequence A002162 in the OEIS ) truncated at 30 decimal places is given by:
ln 2 ≈ 0.693 147 180 559 945 309 417 232 121 458. {\displaystyle \ln 2\approx 0.693\,147\,180\,559\,945\,309\,417\,232\,121\,458.} The logarithm of 2 in other bases is obtained with the formula
log b 2 = ln 2 ln b . {\displaystyle \log _{b}2={\frac {\ln 2}{\ln b}}.} The common logarithm in particular is (OEIS : A007524 )
log 10 2 ≈ 0.301 029 995 663 981 195. {\displaystyle \log _{10}2\approx 0.301\,029\,995\,663\,981\,195.} The inverse of this number is the binary logarithm of 10:
log 2 10 = 1 log 10 2 ≈ 3.321 928 095 {\displaystyle \log _{2}10={\frac {1}{\log _{10}2}}\approx 3.321\,928\,095} (OEIS : A020862 ).By the Lindemann–Weierstrass theorem , the natural logarithm of any natural number other than 0 and 1 (more generally, of any positive algebraic number other than 1) is a transcendental number . It is also contained in the ring of algebraic periods .
Series representations
Rising alternate factorial ln 2 = ∑ n = 1 ∞ ( − 1 ) n + 1 n = 1 − 1 2 + 1 3 − 1 4 + 1 5 − 1 6 + ⋯ . {\displaystyle \ln 2=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}=1-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\frac {1}{5}}-{\frac {1}{6}}+\cdots .} This is the well-known "alternating harmonic series".ln 2 = 1 2 + 1 2 ∑ n = 1 ∞ ( − 1 ) n + 1 n ( n + 1 ) . {\displaystyle \ln 2={\frac {1}{2}}+{\frac {1}{2}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n(n+1)}}.} ln 2 = 5 8 + 1 2 ∑ n = 1 ∞ ( − 1 ) n + 1 n ( n + 1 ) ( n + 2 ) . {\displaystyle \ln 2={\frac {5}{8}}+{\frac {1}{2}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n(n+1)(n+2)}}.} ln 2 = 2 3 + 3 4 ∑ n = 1 ∞ ( − 1 ) n + 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) . {\displaystyle \ln 2={\frac {2}{3}}+{\frac {3}{4}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n(n+1)(n+2)(n+3)}}.} ln 2 = 131 192 + 3 2 ∑ n = 1 ∞ ( − 1 ) n + 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) . {\displaystyle \ln 2={\frac {131}{192}}+{\frac {3}{2}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n(n+1)(n+2)(n+3)(n+4)}}.} ln 2 = 661 960 + 15 4 ∑ n = 1 ∞ ( − 1 ) n + 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) . {\displaystyle \ln 2={\frac {661}{960}}+{\frac {15}{4}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n(n+1)(n+2)(n+3)(n+4)(n+5)}}.} ln 2 = 2 3 ( 1 + 2 4 3 − 4 + 2 8 3 − 8 + 2 12 3 − 12 + … ) . {\displaystyle \ln 2={\frac {2}{3}}\left(1+{\frac {2}{4^{3}-4}}+{\frac {2}{8^{3}-8}}+{\frac {2}{12^{3}-12}}+\dots \right).}
Binary rising constant factorial ln 2 = ∑ n = 1 ∞ 1 2 n n . {\displaystyle \ln 2=\sum _{n=1}^{\infty }{\frac {1}{2^{n}n}}.} ln 2 = 1 − ∑ n = 1 ∞ 1 2 n n ( n + 1 ) . {\displaystyle \ln 2=1-\sum _{n=1}^{\infty }{\frac {1}{2^{n}n(n+1)}}.} ln 2 = 1 2 + 2 ∑ n = 1 ∞ 1 2 n n ( n + 1 ) ( n + 2 ) . {\displaystyle \ln 2={\frac {1}{2}}+2\sum _{n=1}^{\infty }{\frac {1}{2^{n}n(n+1)(n+2)}}.} ln 2 = 5 6 − 6 ∑ n = 1 ∞ 1 2 n n ( n + 1 ) ( n + 2 ) ( n + 3 ) . {\displaystyle \ln 2={\frac {5}{6}}-6\sum _{n=1}^{\infty }{\frac {1}{2^{n}n(n+1)(n+2)(n+3)}}.} ln 2 = 7 12 + 24 ∑ n = 1 ∞ 1 2 n n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) . {\displaystyle \ln 2={\frac {7}{12}}+24\sum _{n=1}^{\infty }{\frac {1}{2^{n}n(n+1)(n+2)(n+3)(n+4)}}.} ln 2 = 47 60 − 120 ∑ n = 1 ∞ 1 2 n n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) . {\displaystyle \ln 2={\frac {47}{60}}-120\sum _{n=1}^{\infty }{\frac {1}{2^{n}n(n+1)(n+2)(n+3)(n+4)(n+5)}}.}
Other series representations ∑ n = 0 ∞ 1 ( 2 n + 1 ) ( 2 n + 2 ) = ln 2. {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{(2n+1)(2n+2)}}=\ln 2.} ∑ n = 1 ∞ 1 n ( 4 n 2 − 1 ) = 2 ln 2 − 1. {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(4n^{2}-1)}}=2\ln 2-1.} ∑ n = 1 ∞ ( − 1 ) n n ( 4 n 2 − 1 ) = ln 2 − 1. {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n(4n^{2}-1)}}=\ln 2-1.} ∑ n = 1 ∞ ( − 1 ) n n ( 9 n 2 − 1 ) = 2 ln 2 − 3 2 . {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n(9n^{2}-1)}}=2\ln 2-{\frac {3}{2}}.} ∑ n = 1 ∞ 1 4 n 2 − 2 n = ln 2. {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{4n^{2}-2n}}=\ln 2.} ∑ n = 1 ∞ 2 ( − 1 ) n + 1 ( 2 n − 1 ) + 1 8 n 2 − 4 n = ln 2. {\displaystyle \sum _{n=1}^{\infty }{\frac {2(-1)^{n+1}(2n-1)+1}{8n^{2}-4n}}=\ln 2.} ∑ n = 0 ∞ ( − 1 ) n 3 n + 1 = ln 2 3 + π 3 3 . {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{3n+1}}={\frac {\ln 2}{3}}+{\frac {\pi }{3{\sqrt {3}}}}.} ∑ n = 0 ∞ ( − 1 ) n 3 n + 2 = − ln 2 3 + π 3 3 . {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{3n+2}}=-{\frac {\ln 2}{3}}+{\frac {\pi }{3{\sqrt {3}}}}.} ∑ n = 0 ∞ ( − 1 ) n ( 3 n + 1 ) ( 3 n + 2 ) = 2 ln 2 3 . {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(3n+1)(3n+2)}}={\frac {2\ln 2}{3}}.} ∑ n = 1 ∞ 1 ∑ k = 1 n k 2 = 18 − 24 ln 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{\sum _{k=1}^{n}k^{2}}}=18-24\ln 2} using lim N → ∞ ∑ n = N 2 N 1 n = ln 2 {\displaystyle \lim _{N\rightarrow \infty }\sum _{n=N}^{2N}{\frac {1}{n}}=\ln 2} ∑ n = 1 ∞ 1 4 n 2 − 3 n = ln 2 + π 6 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{4n^{2}-3n}}=\ln 2+{\frac {\pi }{6}}} (sums of the reciprocals of decagonal numbers )
Involving the Riemann Zeta function ∑ n = 1 ∞ 1 n [ ζ ( 2 n ) − 1 ] = ln 2. {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n}}[\zeta (2n)-1]=\ln 2.} ∑ n = 2 ∞ 1 2 n [ ζ ( n ) − 1 ] = ln 2 − 1 2 . {\displaystyle \sum _{n=2}^{\infty }{\frac {1}{2^{n}}}[\zeta (n)-1]=\ln 2-{\frac {1}{2}}.} ∑ n = 1 ∞ 1 2 n + 1 [ ζ ( 2 n + 1 ) − 1 ] = 1 − γ − ln 2 2 . {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2n+1}}[\zeta (2n+1)-1]=1-\gamma -{\frac {\ln 2}{2}}.} ∑ n = 1 ∞ 1 2 2 n − 1 ( 2 n + 1 ) ζ ( 2 n ) = 1 − ln 2. {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{2n-1}(2n+1)}}\zeta (2n)=1-\ln 2.} (γ is the Euler–Mascheroni constant and ζ Riemann's zeta function .)
BBP-type representations ln 2 = 2 3 + 1 2 ∑ k = 1 ∞ ( 1 2 k + 1 4 k + 1 + 1 8 k + 4 + 1 16 k + 12 ) 1 16 k . {\displaystyle \ln 2={\frac {2}{3}}+{\frac {1}{2}}\sum _{k=1}^{\infty }\left({\frac {1}{2k}}+{\frac {1}{4k+1}}+{\frac {1}{8k+4}}+{\frac {1}{16k+12}}\right){\frac {1}{16^{k}}}.} (See more about Bailey–Borwein–Plouffe (BBP)-type representations .)
Applying the three general series for natural logarithm to 2 directly gives:
ln 2 = ∑ n = 1 ∞ ( − 1 ) n − 1 n . {\displaystyle \ln 2=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n}}.} ln 2 = ∑ n = 1 ∞ 1 2 n n . {\displaystyle \ln 2=\sum _{n=1}^{\infty }{\frac {1}{2^{n}n}}.} ln 2 = 2 3 ∑ k = 0 ∞ 1 9 k ( 2 k + 1 ) . {\displaystyle \ln 2={\frac {2}{3}}\sum _{k=0}^{\infty }{\frac {1}{9^{k}(2k+1)}}.} Applying them to 2 = 3 2 ⋅ 4 3 {\displaystyle \textstyle 2={\frac {3}{2}}\cdot {\frac {4}{3}}} gives:
ln 2 = ∑ n = 1 ∞ ( − 1 ) n − 1 2 n n + ∑ n = 1 ∞ ( − 1 ) n − 1 3 n n . {\displaystyle \ln 2=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{2^{n}n}}+\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{3^{n}n}}.} ln 2 = ∑ n = 1 ∞ 1 3 n n + ∑ n = 1 ∞ 1 4 n n . {\displaystyle \ln 2=\sum _{n=1}^{\infty }{\frac {1}{3^{n}n}}+\sum _{n=1}^{\infty }{\frac {1}{4^{n}n}}.} ln 2 = 2 5 ∑ k = 0 ∞ 1 25 k ( 2 k + 1 ) + 2 7 ∑ k = 0 ∞ 1 49 k ( 2 k + 1 ) . {\displaystyle \ln 2={\frac {2}{5}}\sum _{k=0}^{\infty }{\frac {1}{25^{k}(2k+1)}}+{\frac {2}{7}}\sum _{k=0}^{\infty }{\frac {1}{49^{k}(2k+1)}}.} Applying them to 2 = ( 2 ) 2 {\displaystyle \textstyle 2=({\sqrt {2}})^{2}} gives:
ln 2 = 2 ∑ n = 1 ∞ ( − 1 ) n − 1 ( 2 + 1 ) n n . {\displaystyle \ln 2=2\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{({\sqrt {2}}+1)^{n}n}}.} ln 2 = 2 ∑ n = 1 ∞ 1 ( 2 + 2 ) n n . {\displaystyle \ln 2=2\sum _{n=1}^{\infty }{\frac {1}{(2+{\sqrt {2}})^{n}n}}.} ln 2 = 4 3 + 2 2 ∑ k = 0 ∞ 1 ( 17 + 12 2 ) k ( 2 k + 1 ) . {\displaystyle \ln 2={\frac {4}{3+2{\sqrt {2}}}}\sum _{k=0}^{\infty }{\frac {1}{(17+12{\sqrt {2}})^{k}(2k+1)}}.} Applying them to 2 = ( 16 15 ) 7 ⋅ ( 81 80 ) 3 ⋅ ( 25 24 ) 5 {\displaystyle \textstyle 2={\left({\frac {16}{15}}\right)}^{7}\cdot {\left({\frac {81}{80}}\right)}^{3}\cdot {\left({\frac {25}{24}}\right)}^{5}} gives:
ln 2 = 7 ∑ n = 1 ∞ ( − 1 ) n − 1 15 n n + 3 ∑ n = 1 ∞ ( − 1 ) n − 1 80 n n + 5 ∑ n = 1 ∞ ( − 1 ) n − 1 24 n n . {\displaystyle \ln 2=7\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{15^{n}n}}+3\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{80^{n}n}}+5\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{24^{n}n}}.} ln 2 = 7 ∑ n = 1 ∞ 1 16 n n + 3 ∑ n = 1 ∞ 1 81 n n + 5 ∑ n = 1 ∞ 1 25 n n . {\displaystyle \ln 2=7\sum _{n=1}^{\infty }{\frac {1}{16^{n}n}}+3\sum _{n=1}^{\infty }{\frac {1}{81^{n}n}}+5\sum _{n=1}^{\infty }{\frac {1}{25^{n}n}}.} ln 2 = 14 31 ∑ k = 0 ∞ 1 961 k ( 2 k + 1 ) + 6 161 ∑ k = 0 ∞ 1 25921 k ( 2 k + 1 ) + 10 49 ∑ k = 0 ∞ 1 2401 k ( 2 k + 1 ) . {\displaystyle \ln 2={\frac {14}{31}}\sum _{k=0}^{\infty }{\frac {1}{961^{k}(2k+1)}}+{\frac {6}{161}}\sum _{k=0}^{\infty }{\frac {1}{25921^{k}(2k+1)}}+{\frac {10}{49}}\sum _{k=0}^{\infty }{\frac {1}{2401^{k}(2k+1)}}.}
Representation as integrals The natural logarithm of 2 occurs frequently as the result of integration. Some explicit formulas for it include:
∫ 0 1 d x 1 + x = ∫ 1 2 d x x = ln 2 {\displaystyle \int _{0}^{1}{\frac {dx}{1+x}}=\int _{1}^{2}{\frac {dx}{x}}=\ln 2} ∫ 0 ∞ e − x 1 − e − x x d x = ln 2 {\displaystyle \int _{0}^{\infty }e^{-x}{\frac {1-e^{-x}}{x}}\,dx=\ln 2} ∫ 0 ∞ 2 − x d x = 1 ln 2 {\displaystyle \int _{0}^{\infty }2^{-x}dx={\frac {1}{\ln 2}}} ∫ 0 π 3 tan x d x = 2 ∫ 0 π 4 tan x d x = ln 2 {\displaystyle \int _{0}^{\frac {\pi }{3}}\tan x\,dx=2\int _{0}^{\frac {\pi }{4}}\tan x\,dx=\ln 2} − 1 π i ∫ 0 ∞ ln x ln ln x ( x + 1 ) 2 d x = ln 2 {\displaystyle -{\frac {1}{\pi i}}\int _{0}^{\infty }{\frac {\ln x\ln \ln x}{(x+1)^{2}}}\,dx=\ln 2}
Other representations The Pierce expansion is OEIS : A091846
ln 2 = 1 − 1 1 ⋅ 3 + 1 1 ⋅ 3 ⋅ 12 − ⋯ . {\displaystyle \ln 2=1-{\frac {1}{1\cdot 3}}+{\frac {1}{1\cdot 3\cdot 12}}-\cdots .} The Engel expansion is OEIS : A059180
ln 2 = 1 2 + 1 2 ⋅ 3 + 1 2 ⋅ 3 ⋅ 7 + 1 2 ⋅ 3 ⋅ 7 ⋅ 9 + ⋯ . {\displaystyle \ln 2={\frac {1}{2}}+{\frac {1}{2\cdot 3}}+{\frac {1}{2\cdot 3\cdot 7}}+{\frac {1}{2\cdot 3\cdot 7\cdot 9}}+\cdots .} The cotangent expansion is OEIS : A081785
ln 2 = cot ( arccot ( 0 ) − arccot ( 1 ) + arccot ( 5 ) − arccot ( 55 ) + arccot ( 14187 ) − ⋯ ) . {\displaystyle \ln 2=\cot({\operatorname {arccot}(0)-\operatorname {arccot}(1)+\operatorname {arccot}(5)-\operatorname {arccot}(55)+\operatorname {arccot}(14187)-\cdots }).} The simple continued fraction expansion is OEIS : A016730
ln 2 = [ 0 ; 1 , 2 , 3 , 1 , 6 , 3 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 3 , 10 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 3 , 2 , 3 , 1 , . . . ] {\displaystyle \ln 2=\left[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,1,1,3,2,3,1,...\right]} ,which yields rational approximations, the first few of which are 0, 1, 2/3, 7/10, 9/13 and 61/88.
This generalized continued fraction :
ln 2 = [ 0 ; 1 , 2 , 3 , 1 , 5 , 2 3 , 7 , 1 2 , 9 , 2 5 , . . . , 2 k − 1 , 2 k , . . . ] {\displaystyle \ln 2=\left[0;1,2,3,1,5,{\tfrac {2}{3}},7,{\tfrac {1}{2}},9,{\tfrac {2}{5}},...,2k-1,{\frac {2}{k}},...\right]} ,also expressible as ln 2 = 1 1 + 1 2 + 1 3 + 2 2 + 2 5 + 3 2 + 3 7 + 4 2 + ⋱ = 2 3 − 1 2 9 − 2 2 15 − 3 2 21 − ⋱ {\displaystyle \ln 2={\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{3+{\cfrac {2}{2+{\cfrac {2}{5+{\cfrac {3}{2+{\cfrac {3}{7+{\cfrac {4}{2+\ddots }}}}}}}}}}}}}}}}={\cfrac {2}{3-{\cfrac {1^{2}}{9-{\cfrac {2^{2}}{15-{\cfrac {3^{2}}{21-\ddots }}}}}}}}}
Bootstrapping other logarithms Given a value of ln 2 , a scheme of computing the logarithms of other integers is to tabulate the logarithms of the prime numbers and in the next layer the logarithms of the composite numbers c based on their factorizations
c = 2 i 3 j 5 k 7 l ⋯ → ln ( c ) = i ln ( 2 ) + j ln ( 3 ) + k ln ( 5 ) + l ln ( 7 ) + ⋯ {\displaystyle c=2^{i}3^{j}5^{k}7^{l}\cdots \rightarrow \ln(c)=i\ln(2)+j\ln(3)+k\ln(5)+l\ln(7)+\cdots } This employs
In a third layer, the logarithms of rational numbers r =a / b are computed with ln(r ) = ln(a ) − ln(b ) , and logarithms of roots via ln n √c =1 / n ln(c ) .
The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2i close to powers bj of other numbers b is comparatively easy, and series representations of ln(b ) are found by coupling 2 to b with logarithmic conversions .
Example If ps = qt + d with some small d , then ps / qt = 1 +d / qt and therefore
s ln p − t ln q = ln ( 1 + d q t ) = ∑ m = 1 ∞ ( − 1 ) m + 1 m ( d q t ) m = ∑ n = 0 ∞ 2 2 n + 1 ( d 2 q t + d ) 2 n + 1 . {\displaystyle s\ln p-t\ln q=\ln \left(1+{\frac {d}{q^{t}}}\right)=\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}}{m}}\left({\frac {d}{q^{t}}}\right)^{m}=\sum _{n=0}^{\infty }{\frac {2}{2n+1}}{\left({\frac {d}{2q^{t}+d}}\right)}^{2n+1}.} Selecting q = 2 represents ln p by ln 2 and a series of a parameter d / qt that one wishes to keep small for quick convergence. Taking 32 = 23 + 1 , for example, generates
2 ln 3 = 3 ln 2 − ∑ k ≥ 1 ( − 1 ) k 8 k k = 3 ln 2 + ∑ n = 0 ∞ 2 2 n + 1 ( 1 2 ⋅ 8 + 1 ) 2 n + 1 . {\displaystyle 2\ln 3=3\ln 2-\sum _{k\geq 1}{\frac {(-1)^{k}}{8^{k}k}}=3\ln 2+\sum _{n=0}^{\infty }{\frac {2}{2n+1}}{\left({\frac {1}{2\cdot 8+1}}\right)}^{2n+1}.} This is actually the third line in the following table of expansions of this type:
Starting from the natural logarithm of q = 10 one might use these parameters:
Known digits This is a table of recent records in calculating digits of ln 2 . As of December 2018, it has been calculated to more digits than any other natural logarithm of a natural number, except that of 1.
See also
References Brent, Richard P. (1976). "Fast multiple-precision evaluation of elementary functions" . J. ACM . 23 (2): 242– 251. doi :10.1145/321941.321944 . MR 0395314 . S2CID 6761843 . Uhler, Horace S. (1940). "Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17" . Proc. Natl. Acad. Sci. U.S.A . 26 (3): 205– 212. Bibcode :1940PNAS...26..205U . doi :10.1073/pnas.26.3.205 . MR 0001523 . PMC 1078033 . PMID 16588339 . Sweeney, Dura W. (1963). "On the computation of Euler's constant" . Mathematics of Computation . 17 (82): 170– 178. doi :10.1090/S0025-5718-1963-0160308-X . MR 0160308 . Chamberland, Marc (2003). "Binary BBP-formulae for logarithms and generalized Gaussian–Mersenne primes" (PDF) . Journal of Integer Sequences . 6 : 03.3.7. Bibcode :2003JIntS...6...37C . MR 2046407 . Archived from the original (PDF) on 2011-06-06. Retrieved 2010-04-29 . Gourévitch, Boris; Guillera Goyanes, Jesús (2007). "Construction of binomial sums for π and polylogarithmic constants inspired by BBP formulas" (PDF) . Applied Math. E-Notes . 7 : 237– 246. MR 2346048 . Wu, Qiang (2003). "On the linear independence measure of logarithms of rational numbers" . Mathematics of Computation . 72 (242): 901– 911. doi :10.1090/S0025-5718-02-01442-4 .
External links