Neural differential equation

In machine learning, a neural differential equation is a differential equation whose right-hand side is parametrized by the weights θ of a neural network. In particular, a neural ordinary differential equation (neural ODE) is an ordinary differential equation of the form

In classical neural networks, layers are arranged in a sequence indexed by natural numbers. In neural ODEs, however, layers form a continuous family indexed by positive real numbers. Specifically, the function maps each positive index t to a real value, representing the state of the neural network at that layer.

Neural ODEs can be understood as continuous-time control systems, where their ability to interpolate data can be interpreted in terms of controllability.

Connection with residual neural networks

Neural ODEs can be interpreted as a residual neural network with a continuum of layers rather than a discrete number of layers. Applying the Euler method with a unit time step to a neural ODE yields the forward propagation equation of a residual neural network:

with ℓ being the ℓ-th layer of this residual neural network. While the forward propagation of a residual neural network is done by applying a sequence of transformations starting at the input layer, the forward propagation computation of a neural ODE is done by solving a differential equation. More precisely, the output associated to the input of the neural ODE is obtained by solving the initial value problem

and assigning the value to .

Universal differential equations

In physics-informed contexts where additional information is known, neural ODEs can be combined with an existing first-principles model to build a physics-informed neural network model called universal differential equations (UDE). For instance, an UDE version of the Lotka-Volterra model can be written as

where the terms and are correction terms parametrized by neural networks.

References

See also

Uses material from the Wikipedia article Neural differential equation, released under the CC BY-SA 4.0 license.