In mathematics, the Neville theta functions, named after Eric Harold Neville, are defined as follows:




where: K(m) is the complete elliptic integral of the first kind,
, and
is the elliptic nome.
Note that the functions θp(z,m) are sometimes defined in terms of the nome q(m) and written θp(z,q) (e.g. NIST). The functions may also be written in terms of the τ parameter θp(z|τ) where
.
Relationship to other functions
The Neville theta functions may be expressed in terms of the Jacobi theta functions




where
.
The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then

Examples




Symmetry




Complex 3D plots
Notes
References