Nodal decomposition

Nodal decomposition.

In category theory, an abstract mathematical discipline, a nodal decomposition of a morphism is a representation of as a product , where is a strong epimorphism, a bimorphism, and a strong monomorphism.

Uniqueness and notations

Uniqueness of the nodal decomposition.

If it exists, the nodal decomposition is unique up to an isomorphism in the following sense: for any two nodal decompositions and there exist isomorphisms and such that

Notations.

This property justifies some special notations for the elements of the nodal decomposition:

– here and are called the nodal coimage of , and the nodal image of , and the nodal reduced part of .

In these notations the nodal decomposition takes the form

Connection with the basic decomposition in pre-abelian categories

In a pre-abelian category each morphism has a standard decomposition

,

called the basic decomposition (here , , and are respectively the image, the coimage and the reduced part of the morphism ).

Nodal and basic decompositions.

If a morphism in a pre-abelian category has a nodal decomposition, then there exist morphisms and which (being not necessarily isomorphisms) connect the nodal decomposition with the basic decomposition by the following identities:

Categories with nodal decomposition

A category is called a category with nodal decomposition if each morphism has a nodal decomposition in . This property plays an important role in constructing envelopes and refinements in .

In an abelian category the basic decomposition

is always nodal. As a corollary, all abelian categories have nodal decomposition.

If a pre-abelian category is linearly complete, well-powered in strong monomorphisms and co-well-powered in strong epimorphisms, then has nodal decomposition.

More generally, suppose a category is linearly complete, well-powered in strong monomorphisms, co-well-powered in strong epimorphisms, and in addition strong epimorphisms discern monomorphisms in , and, dually, strong monomorphisms discern epimorphisms in , then has nodal decomposition.

The category Ste of stereotype spaces (being non-abelian) has nodal decomposition, as well as the (non-additive) category SteAlg of stereotype algebras .

Notes

References

  • Borceux, F. (1994). Handbook of Categorical Algebra 1. Basic Category Theory. Cambridge University Press. ISBN 978-0521061193.
  • Tsalenko, M.S.; Shulgeifer, E.G. (1974). Foundations of category theory. Nauka.
  • Akbarov, S.S. (2016). "Envelopes and refinements in categories, with applications to functional analysis". Dissertationes Mathematicae. 513: 1–188. arXiv:1110.2013. doi:10.4064/dm702-12-2015. S2CID 118895911.
Uses material from the Wikipedia article Nodal decomposition, released under the CC BY-SA 4.0 license.