Partial algebra
In abstract algebra, a partial algebra is a generalization of universal algebra to partial operations.
Example(s)
- partial groupoid
- field — the multiplicative inversion is the only proper partial operation
- effect algebras
Structure
There is a "Meta Birkhoff Theorem" by Andreka, Nemeti and Sain (1982).
References
Further reading
- Peter Burmeister (2002) [1986]. A Model Theoretic Oriented Approach to Partial Algebras. CiteSeerX 10.1.1.92.6134.
- Horst Reichel (1984). Structural induction on partial algebras. Akademie-Verlag.
- Horst Reichel (1987). Initial computability, algebraic specifications, and partial algebras. Clarendon Press. ISBN 978-0-19-853806-6.