Probability Theory
Comparison of the Poisson distribution (black lines) and the binomial distribution with n = 10 (red circles), n = 20 (blue circles), n = 1000 (green circles). All distributions have a mean of 5. The horizontal axis shows the number of events k . As n gets larger, the Poisson distribution becomes an increasingly better approximation for the binomial distribution with the same mean. In probability theory , the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution , under certain conditions. The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem .
Theorem Let p n {\displaystyle p_{n}} be a sequence of real numbers in [ 0 , 1 ] {\displaystyle [0,1]} such that the sequence n p n {\displaystyle np_{n}} converges to a finite limit λ {\displaystyle \lambda } . Then:
lim n → ∞ ( n k ) p n k ( 1 − p n ) n − k = e − λ λ k k ! {\displaystyle \lim _{n\to \infty }{n \choose k}p_{n}^{k}(1-p_{n})^{n-k}=e^{-\lambda }{\frac {\lambda ^{k}}{k!}}}
First proof Assume λ > 0 {\displaystyle \lambda >0} (the case λ = 0 {\displaystyle \lambda =0} is easier). Then
lim n → ∞ ( n k ) p n k ( 1 − p n ) n − k = lim n → ∞ n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ! ( λ n ( 1 + o ( 1 ) ) ) k ( 1 − λ n ( 1 + o ( 1 ) ) ) n − k = lim n → ∞ n k + O ( n k − 1 ) k ! λ k n k ( 1 − λ n ( 1 + o ( 1 ) ) ) n ( 1 − λ n ( 1 + o ( 1 ) ) ) − k = lim n → ∞ λ k k ! ( 1 − λ n ( 1 + o ( 1 ) ) ) n . {\displaystyle {\begin{aligned}\lim \limits _{n\rightarrow \infty }{n \choose k}p_{n}^{k}(1-p_{n})^{n-k}&=\lim _{n\to \infty }{\frac {n(n-1)(n-2)\dots (n-k+1)}{k!}}\left({\frac {\lambda }{n}}(1+o(1))\right)^{k}\left(1-{\frac {\lambda }{n}}(1+o(1))\right)^{n-k}\\&=\lim _{n\to \infty }{\frac {n^{k}+O\left(n^{k-1}\right)}{k!}}{\frac {\lambda ^{k}}{n^{k}}}\left(1-{\frac {\lambda }{n}}(1+o(1))\right)^{n}\left(1-{\frac {\lambda }{n}}(1+o(1))\right)^{-k}\\&=\lim _{n\to \infty }{\frac {\lambda ^{k}}{k!}}\left(1-{\frac {\lambda }{n}}(1+o(1))\right)^{n}.\end{aligned}}} Since
lim n → ∞ ( 1 − λ n ( 1 + o ( 1 ) ) ) n = e − λ {\displaystyle \lim _{n\to \infty }\left(1-{\frac {\lambda }{n}}(1+o(1))\right)^{n}=e^{-\lambda }} this leaves
( n k ) p k ( 1 − p ) n − k ≃ λ k e − λ k ! . {\displaystyle {n \choose k}p^{k}(1-p)^{n-k}\simeq {\frac {\lambda ^{k}e^{-\lambda }}{k!}}.}
Alternative proof Using Stirling's approximation , it can be written:
( n k ) p k ( 1 − p ) n − k = n ! ( n − k ) ! k ! p k ( 1 − p ) n − k ≃ 2 π n ( n e ) n 2 π ( n − k ) ( n − k e ) n − k k ! p k ( 1 − p ) n − k = n n − k n n e − k ( n − k ) n − k k ! p k ( 1 − p ) n − k . {\displaystyle {\begin{aligned}{n \choose k}p^{k}(1-p)^{n-k}&={\frac {n!}{(n-k)!k!}}p^{k}(1-p)^{n-k}\\&\simeq {\frac {{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}{{\sqrt {2\pi \left(n-k\right)}}\left({\frac {n-k}{e}}\right)^{n-k}k!}}p^{k}(1-p)^{n-k}\\&={\sqrt {\frac {n}{n-k}}}{\frac {n^{n}e^{-k}}{\left(n-k\right)^{n-k}k!}}p^{k}(1-p)^{n-k}.\end{aligned}}} Letting n → ∞ {\displaystyle n\to \infty } and n p = λ {\displaystyle np=\lambda } :
( n k ) p k ( 1 − p ) n − k ≃ n n p k ( 1 − p ) n − k e − k ( n − k ) n − k k ! = n n ( λ n ) k ( 1 − λ n ) n − k e − k n n − k ( 1 − k n ) n − k k ! = λ k ( 1 − λ n ) n − k e − k ( 1 − k n ) n − k k ! ≃ λ k ( 1 − λ n ) n e − k ( 1 − k n ) n k ! . {\displaystyle {\begin{aligned}{n \choose k}p^{k}(1-p)^{n-k}&\simeq {\frac {n^{n}\,p^{k}(1-p)^{n-k}e^{-k}}{\left(n-k\right)^{n-k}k!}}\\&={\frac {n^{n}\left({\frac {\lambda }{n}}\right)^{k}\left(1-{\frac {\lambda }{n}}\right)^{n-k}e^{-k}}{n^{n-k}\left(1-{\frac {k}{n}}\right)^{n-k}k!}}\\&={\frac {\lambda ^{k}\left(1-{\frac {\lambda }{n}}\right)^{n-k}e^{-k}}{\left(1-{\frac {k}{n}}\right)^{n-k}k!}}\\&\simeq {\frac {\lambda ^{k}\left(1-{\frac {\lambda }{n}}\right)^{n}e^{-k}}{\left(1-{\frac {k}{n}}\right)^{n}k!}}.\end{aligned}}} As n → ∞ {\displaystyle n\to \infty } , ( 1 − x n ) n → e − x {\displaystyle \left(1-{\frac {x}{n}}\right)^{n}\to e^{-x}} so:
( n k ) p k ( 1 − p ) n − k ≃ λ k e − λ e − k e − k k ! = λ k e − λ k ! {\displaystyle {\begin{aligned}{n \choose k}p^{k}(1-p)^{n-k}&\simeq {\frac {\lambda ^{k}e^{-\lambda }e^{-k}}{e^{-k}k!}}\\&={\frac {\lambda ^{k}e^{-\lambda }}{k!}}\end{aligned}}}
Ordinary generating functions It is also possible to demonstrate the theorem through the use of ordinary generating functions of the binomial distribution:
G bin ( x ; p , N ) ≡ ∑ k = 0 N [ ( N k ) p k ( 1 − p ) N − k ] x k = [ 1 + ( x − 1 ) p ] N {\displaystyle G_{\operatorname {bin} }(x;p,N)\equiv \sum _{k=0}^{N}\left[{\binom {N}{k}}p^{k}(1-p)^{N-k}\right]x^{k}={\Big [}1+(x-1)p{\Big ]}^{N}} by virtue of the binomial theorem . Taking the limit N → ∞ {\displaystyle N\rightarrow \infty } while keeping the product p N ≡ λ {\displaystyle pN\equiv \lambda } constant, it can be seen:
lim N → ∞ G bin ( x ; p , N ) = lim N → ∞ [ 1 + λ ( x − 1 ) N ] N = e λ ( x − 1 ) = ∑ k = 0 ∞ [ e − λ λ k k ! ] x k {\displaystyle \lim _{N\rightarrow \infty }G_{\operatorname {bin} }(x;p,N)=\lim _{N\rightarrow \infty }\left[1+{\frac {\lambda (x-1)}{N}}\right]^{N}=\mathrm {e} ^{\lambda (x-1)}=\sum _{k=0}^{\infty }\left[{\frac {\mathrm {e} ^{-\lambda }\lambda ^{k}}{k!}}\right]x^{k}} which is the OGF for the Poisson distribution. (The second equality holds due to the definition of the exponential function .)
See also
References