In mathematics, a quadratic integral is an integral of the form 
It can be evaluated by completing the square in the denominator.

Positive-discriminant case
Assume that the discriminant q = b2 − 4ac is positive. In that case, define u and A by
and 
The quadratic integral can now be written as 
The partial fraction decomposition
allows us to evaluate the integral: 
The final result for the original integral, under the assumption that q > 0, is 
Negative-discriminant case
In case the discriminant q = b2 − 4ac is negative, the second term in the denominator in
is positive. Then the integral becomes ![{\displaystyle {\begin{aligned}{\frac {1}{c}}\int {\frac {du}{u^{2}+A^{2}}}&={\frac {1}{cA}}\int {\frac {du/A}{(u/A)^{2}+1}}\\[9pt]&={\frac {1}{cA}}\int {\frac {dw}{w^{2}+1}}\\[9pt]&={\frac {1}{cA}}\arctan(w)+\mathrm {constant} \\[9pt]&={\frac {1}{cA}}\arctan \left({\frac {u}{A}}\right)+{\text{constant}}\\[9pt]&={\frac {1}{c{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}}\arctan \left({\frac {x+{\frac {b}{2c}}}{\sqrt {{\frac {a}{c}}-{\frac {b^{2}}{4c^{2}}}}}}\right)+{\text{constant}}\\[9pt]&={\frac {2}{\sqrt {4ac-b^{2}\,}}}\arctan \left({\frac {2cx+b}{\sqrt {4ac-b^{2}}}}\right)+{\text{constant}}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0715d439a69d30944bda613d3112a8b890555207)
References
- Weisstein, Eric W. "Quadratic Integral." From MathWorld--A Wolfram Web Resource, wherein the following is referenced:
- Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5. LCCN 2014010276.