Quantum

In physics, a quantum (pl.: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light of a specific frequency (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature.

Origin

German physicist and 1918 Nobel Prize for Physics recipient Max Planck (1858–1947)

The modern physics use of the word "quantum" dates to Dec. 14, 1900 when Max Planck reported his findings to the German Physical Society, showing that hypothesizing harmonic oscillators with a definite energy packages solved a long standing problem with the theory of blackbody radiation. In 1905 Albert Einstein suggested that radiation existed in spatially localized packets which he called "quanta of light" ("Lichtquanta"). Einstein was able to use this hypothesis to recast Planck's inconsistent treatment of the blackbody problem in a form that was also consistent with voltage observed in the photoelectric effect experiments work of Philipp Lenard.

As a result of his analysis, Planck deduced the numerical value of h, known as the Planck constant, and reported more precise values for the unit of electrical charge and the Avogadro–Loschmidt number, the number of real molecules in a mole, to the German Physical Society. After his theory was validated, Planck was awarded the Nobel Prize in Physics for his discovery in 1918. In his Nobel lecture, Planck referred to the constant as the "quantum of action".

Quantization

While quantization was first discovered in electromagnetic radiation, it describes a fundamental aspect of energy not just restricted to photons. In the attempt to bring theory into agreement with experiment, Max Planck postulated that electromagnetic energy is absorbed or emitted in discrete packets, or quanta.

See also

References

Further reading

  • Hoffmann, Banesh (1959). The Strange story of the quantum: An account for the general reader of the growth of the ideas underlying our present atomic knowledge (2 ed.). New York: Dover. ISBN 978-0-486-20518-2. {{cite book}}: ISBN / Date incompatibility (help)
  • Mehra, Jagdish; Rechenberg, Helmut; Mehra, Jagdish; Rechenberg, Helmut (2001). The historical development of quantum theory. 4: Pt.1, the fundamental equations of quantum mechanics, 1925-1926 (1. softcover print ed.). New York Heidelberg: Springer. ISBN 978-0-387-95178-2.
  • M. Planck, A Survey of Physical Theory, transl. by R. Jones and D.H. Williams, Methuen & Co., Limited., London 1925 (Dover edition 17 May 2003, ISBN 978-0486678672) including the Nobel lecture.
  • Rodney, Brooks (14 December 2010) Fields of Color: The theory that escaped Einstein. Allegra Print & Imaging. ISBN 979-8373308427
Uses material from the Wikipedia article Quantum, released under the CC BY-SA 4.0 license.