Quot scheme

In algebraic geometry, the Quot scheme is a scheme parametrizing sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme whose set of T-points is the set of isomorphism classes of the quotients of that are flat over T. The notion was introduced by Alexander Grothendieck.

It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme. (In fact, taking F to be the structure sheaf gives a Hilbert scheme.)

Definition

For a scheme of finite type over a Noetherian base scheme , and a coherent sheaf , there is a functor

sending to

where and under the projection . There is an equivalence relation given by if there is an isomorphism commuting with the two projections ; that is,

is a commutative diagram for . Alternatively, there is an equivalent condition of holding . This is called the quot functor which has a natural stratification into a disjoint union of subfunctors, each of which is represented by a projective -scheme called the quot scheme associated to a Hilbert polynomial .

Hilbert polynomial

For a relatively very ample line bundle and any closed point there is a function sending

which is a polynomial for . This is called the Hilbert polynomial which gives a natural stratification of the quot functor. Again, for fixed there is a disjoint union of subfunctors

where

The Hilbert polynomial is the Hilbert polynomial of for closed points . Note the Hilbert polynomial is independent of the choice of very ample line bundle .

Grothendieck's existence theorem

It is a theorem of Grothendieck's that the functors are all representable by projective schemes over .

Examples

Grassmannian

The Grassmannian of -planes in an -dimensional vector space has a universal quotient

where is the -plane represented by . Since is locally free and at every point it represents a -plane, it has the constant Hilbert polynomial . This shows represents the quot functor

Projective space

As a special case, we can construct the project space as the quot scheme

for a sheaf on an -scheme .

Hilbert scheme

The Hilbert scheme is a special example of the quot scheme. Notice a subscheme can be given as a projection

and a flat family of such projections parametrized by a scheme can be given by

Since there is a hilbert polynomial associated to , denoted , there is an isomorphism of schemes

Example of a parameterization

If and for an algebraically closed field, then a non-zero section has vanishing locus with Hilbert polynomial

Then, there is a surjection

with kernel . Since was an arbitrary non-zero section, and the vanishing locus of for gives the same vanishing locus, the scheme gives a natural parameterization of all such sections. There is a sheaf on such that for any , there is an associated subscheme and surjection . This construction represents the quot functor

Quadrics in the projective plane

If and , the Hilbert polynomial is

and

The universal quotient over is given by

where the fiber over a point gives the projective morphism

For example, if represents the coefficients of

then the universal quotient over gives the short exact sequence

Semistable vector bundles on a curve

Semistable vector bundles on a curve of genus can equivalently be described as locally free sheaves of finite rank. Such locally free sheaves of rank and degree have the properties

  1. is generated by global sections

for . This implies there is a surjection

Then, the quot scheme parametrizes all such surjections. Using the Grothendieck–Riemann–Roch theorem the dimension is equal to

For a fixed line bundle of degree there is a twisting , shifting the degree by , so

giving the Hilbert polynomial

Then, the locus of semi-stable vector bundles is contained in

which can be used to construct the moduli space of semistable vector bundles using a GIT quotient.

See also

References

Further reading

Uses material from the Wikipedia article Quot scheme, released under the CC BY-SA 4.0 license.