In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients.
The Racah polynomials were first defined by Wilson (1978) and are given by
![{\displaystyle p_{n}(x(x+\gamma +\delta +1))={}_{4}F_{3}\left[{\begin{matrix}-n&n+\alpha +\beta +1&-x&x+\gamma +\delta +1\\\alpha +1&\gamma +1&\beta +\delta +1\\\end{matrix}};1\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f8669e91de2c035849fc87d8ce46aa12600695e)
Orthogonality

- when
, - where
is the Racah polynomial, 
is the Kronecker delta function and the weight functions are
- and

is the Pochhammer symbol.

- where
is the backward difference operator, 
Generating functions
There are three generating functions for 
- when
or


- when
or


- when
or


When 

- where
are Wilson polynomials.
q-analog
Askey & Wilson (1979) introduced the q-Racah polynomials defined in terms of basic hypergeometric functions by
![{\displaystyle p_{n}(q^{-x}+q^{x+1}cd;a,b,c,d;q)={}_{4}\phi _{3}\left[{\begin{matrix}q^{-n}&abq^{n+1}&q^{-x}&q^{x+1}cd\\aq&bdq&cq\\\end{matrix}};q;q\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2dc584f57d22b464c0732a0e61d35db040eedb8a)
They are sometimes given with changes of variables as
![{\displaystyle W_{n}(x;a,b,c,N;q)={}_{4}\phi _{3}\left[{\begin{matrix}q^{-n}&abq^{n+1}&q^{-x}&cq^{x-n}\\aq&bcq&q^{-N}\\\end{matrix}};q;q\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db8e78dfc0de0af60835bc8e8bcf8eaa6ae338c8)
References
- Askey, Richard; Wilson, James (1979), "A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols" (PDF), SIAM Journal on Mathematical Analysis, 10 (5): 1008–1016, doi:10.1137/0510092, ISSN 0036-1410, MR 0541097, archived from the original on September 25, 2017
- Wilson, J. (1978), Hypergeometric series recurrence relations and some new orthogonal functions, Ph.D. thesis, Univ. Wisconsin, Madison