The q-relaxed intersection of the m subsets of , denoted by is the set of all which belong to all 's, except at most. This definition is illustrated by Figure 1.
Figure 1. q-intersection of 6 sets for q=2 (red), q=3 (green), q= 4 (blue), q= 5 (yellow).
Define
We have
Characterizing the q-relaxed intersection is a thus a set inversion problem.
Example
Consider 8 intervals:
We have
Relaxed intersection of intervals
The relaxed intersection of intervals is not necessary an interval. We thus take the interval hull of the result. If 's are intervals, the relaxed intersection can be computed with a complexity of m.log(m) by using the Marzullo's algorithm. It suffices to sort all lower and upper bounds of the m intervals to represent the function . Then, we easily get the set
which corresponds to a union of intervals. We then return the smallest interval which contains this union.
Figure 2 shows the function associated to the previous example.
Figure 2. Set-membership function associated to the 6 intervals.
Relaxed intersection of boxes
To compute the q-relaxed intersection of m boxes of , we project all m boxes with respect to the n axes. For each of the n groups of m intervals, we compute the q-relaxed intersection. We return Cartesian product of the n resulting intervals. Figure 3 provides an illustration of the 4-relaxed intersection of 6 boxes. Each point of the red box belongs to 4 of the 6 boxes.
Figure 3. The red box corresponds to the 4-relaxed intersection of the 6 boxes
Relaxed union
The q-relaxed union of is defined by
Note that when q=0, the relaxed union/intersection corresponds to the classical union/intersection. More precisely, we have
Combined with a branch-and-bound algorithm such as SIVIA (Set Inversion Via Interval Analysis), the q-relaxed intersection of m subsets of can be computed.
Application to bounded-error estimation
The q-relaxed intersection can be used for robust localization or for tracking.
Robust observers can also be implemented using the relaxed intersections to be robust with respect to outliers.
We propose here a simple example to illustrate the method. Consider a model the ith model output of which is given by
where . Assume that we have
where and are given by the following list
The sets for different are depicted on Figure 4.
Figure 4. Set of all parameter vectors consistent with exactly 6-q data bars (painted red), for q=1,2,3,4,5.