Self-similar process

Self-similar processes are stochastic processes satisfying a mathematically precise version of the self-similarity property. Several related properties have this name, and some are defined here.

A self-similar phenomenon behaves the same when viewed at different degrees of magnification, or different scales on a dimension. Because stochastic processes are random variables with a time and a space component, their self-similarity properties are defined in terms of how a scaling in time relates to a scaling in space.

Distributional self-similarity

A plot of for a Brownian motion and c decreasing, demonstrating the self-similarity with parameter .

Definition

A continuous-time stochastic process is called self-similar with parameter if for all , the processes and have the same law.

Examples

Second-order self-similarity

Definition

A wide-sense stationary process is called exactly second-order self-similar with parameter if the following hold:

(i) , where for each ,
(ii) for all , the autocorrelation functions and of and are equal.

If instead of (ii), the weaker condition

(iii) pointwise as

holds, then is called asymptotically second-order self-similar.

Connection to long-range dependence

In the case , asymptotic self-similarity is equivalent to long-range dependence. Self-similar and long-range dependent characteristics in computer networks present a fundamentally different set of problems to people doing analysis and/or design of networks, and many of the previous assumptions upon which systems have been built are no longer valid in the presence of self-similarity.

Long-range dependence is closely connected to the theory of heavy-tailed distributions. A distribution is said to have a heavy tail if

One example of a heavy-tailed distribution is the Pareto distribution. Examples of processes that can be described using heavy-tailed distributions include traffic processes, such as packet inter-arrival times and burst lengths.

Examples

References

Sources

  • Kihong Park; Walter Willinger (2000), Self-Similar Network Traffic and Performance Evaluation, New York, NY, USA: John Wiley & Sons, Inc., doi:10.1002/047120644X, ISBN 0471319740
Uses material from the Wikipedia article Self-similar process, released under the CC BY-SA 4.0 license.