September 2006 lunar eclipse

A partial lunar eclipse occurred at the Moon’s ascending node of orbit on Thursday, September 7, 2006, with an umbral magnitude of 0.1837. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring only about 4 hours before perigee (on September 7, 2006, at 23:00 UTC), the Moon's apparent diameter was larger.

Visibility

The eclipse was completely visible over Asia, east Africa, eastern Europe and western Australia, seen rising over west Africa and western Europe and setting over eastern Australia and the western Pacific Ocean.

Images

NASA chart of the eclipse


Degania A, Israel

Eclipse details

Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipses in 2006

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 118

Inex

Triad

  • Preceded by: Lunar eclipse of November 7, 1919
  • Followed by: Lunar eclipse of July 8, 2093

Lunar eclipses of 2006–2009

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.

The lunar eclipses on July 7, 2009 (penumbral) and December 31, 2009 (partial) occur in the next lunar year eclipse set.

Metonic series

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will in nearly the same location relative to the background stars.

Saros 118

This eclipse is a part of Saros series 118, repeating every 18 years, 11 days, and containing 73 events. The series started with a penumbral lunar eclipse on March 2, 1105. It contains partial eclipses from June 8, 1267 through August 12, 1375; total eclipses from August 22, 1393 through June 22, 1880; and a second set of partial eclipses from July 3, 1898 through September 18, 2024. The series ends at member 73 as a penumbral eclipse on May 7, 2403.

The longest duration of totality was produced by member 37 at 99 minutes, 22 seconds on April 7, 1754. All eclipses in this series occur at the Moon’s ascending node of orbit.

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). This lunar eclipse is related to two partial solar eclipses of Solar Saros 125.

See also

References


Uses material from the Wikipedia article September 2006 lunar eclipse, released under the CC BY-SA 4.0 license.