Spherical pendulum: angles and velocities. In physics , a spherical pendulum is a higher dimensional analogue of the pendulum . It consists of a mass m moving without friction on the surface of a sphere . The only forces acting on the mass are the reaction from the sphere and gravity .
Owing to the spherical geometry of the problem, spherical coordinates are used to describe the position of the mass in terms of ( r , θ , ϕ ) {\displaystyle (r,\theta ,\phi )} , where r is fixed such that r = l {\displaystyle r=l} .
Lagrangian mechanics Routinely, in order to write down the kinetic T = 1 2 m v 2 {\displaystyle T={\tfrac {1}{2}}mv^{2}} and potential V {\displaystyle V} parts of the Lagrangian L = T − V {\displaystyle L=T-V} in arbitrary generalized coordinates the position of the mass is expressed along Cartesian axes. Here, following the conventions shown in the diagram,
x = l sin θ cos ϕ {\displaystyle x=l\sin \theta \cos \phi } y = l sin θ sin ϕ {\displaystyle y=l\sin \theta \sin \phi } z = l ( 1 − cos θ ) {\displaystyle z=l(1-\cos \theta )} .Next, time derivatives of these coordinates are taken, to obtain velocities along the axes
x ˙ = l cos θ cos ϕ θ ˙ − l sin θ sin ϕ ϕ ˙ {\displaystyle {\dot {x}}=l\cos \theta \cos \phi \,{\dot {\theta }}-l\sin \theta \sin \phi \,{\dot {\phi }}} y ˙ = l cos θ sin ϕ θ ˙ + l sin θ cos ϕ ϕ ˙ {\displaystyle {\dot {y}}=l\cos \theta \sin \phi \,{\dot {\theta }}+l\sin \theta \cos \phi \,{\dot {\phi }}} z ˙ = l sin θ θ ˙ {\displaystyle {\dot {z}}=l\sin \theta \,{\dot {\theta }}} .Thus,
v 2 = x ˙ 2 + y ˙ 2 + z ˙ 2 = l 2 ( θ ˙ 2 + sin 2 θ ϕ ˙ 2 ) {\displaystyle v^{2}={\dot {x}}^{2}+{\dot {y}}^{2}+{\dot {z}}^{2}=l^{2}\left({\dot {\theta }}^{2}+\sin ^{2}\theta \,{\dot {\phi }}^{2}\right)} and
T = 1 2 m v 2 = 1 2 m l 2 ( θ ˙ 2 + sin 2 θ ϕ ˙ 2 ) {\displaystyle T={\tfrac {1}{2}}mv^{2}={\tfrac {1}{2}}ml^{2}\left({\dot {\theta }}^{2}+\sin ^{2}\theta \,{\dot {\phi }}^{2}\right)} V = m g z = m g l ( 1 − cos θ ) {\displaystyle V=mg\,z=mg\,l(1-\cos \theta )} The Lagrangian, with constant parts removed, is
L = 1 2 m l 2 ( θ ˙ 2 + sin 2 θ ϕ ˙ 2 ) + m g l cos θ . {\displaystyle L={\frac {1}{2}}ml^{2}\left({\dot {\theta }}^{2}+\sin ^{2}\theta \ {\dot {\phi }}^{2}\right)+mgl\cos \theta .} The Euler–Lagrange equation involving the polar angle θ {\displaystyle \theta }
d d t ∂ ∂ θ ˙ L − ∂ ∂ θ L = 0 {\displaystyle {\frac {d}{dt}}{\frac {\partial }{\partial {\dot {\theta }}}}L-{\frac {\partial }{\partial \theta }}L=0} gives
d d t ( m l 2 θ ˙ ) − m l 2 sin θ ⋅ cos θ ϕ ˙ 2 + m g l sin θ = 0 {\displaystyle {\frac {d}{dt}}\left(ml^{2}{\dot {\theta }}\right)-ml^{2}\sin \theta \cdot \cos \theta \,{\dot {\phi }}^{2}+mgl\sin \theta =0} and
θ ¨ = sin θ cos θ ϕ ˙ 2 − g l sin θ {\displaystyle {\ddot {\theta }}=\sin \theta \cos \theta {\dot {\phi }}^{2}-{\frac {g}{l}}\sin \theta } When ϕ ˙ = 0 {\displaystyle {\dot {\phi }}=0} the equation reduces to the differential equation for the motion of a simple gravity pendulum .
Similarly, the Euler–Lagrange equation involving the azimuth ϕ {\displaystyle \phi } ,
d d t ∂ ∂ ϕ ˙ L − ∂ ∂ ϕ L = 0 {\displaystyle {\frac {d}{dt}}{\frac {\partial }{\partial {\dot {\phi }}}}L-{\frac {\partial }{\partial \phi }}L=0} gives
d d t ( m l 2 sin 2 θ ⋅ ϕ ˙ ) = 0 {\displaystyle {\frac {d}{dt}}\left(ml^{2}\sin ^{2}\theta \cdot {\dot {\phi }}\right)=0} .The last equation shows that angular momentum around the vertical axis, | L z | = l sin θ × m l sin θ ϕ ˙ {\displaystyle |\mathbf {L} _{z}|=l\sin \theta \times ml\sin \theta \,{\dot {\phi }}} is conserved. The factor m l 2 sin 2 θ {\displaystyle ml^{2}\sin ^{2}\theta } will play a role in the Hamiltonian formulation below.
The second order differential equation determining the evolution of ϕ {\displaystyle \phi } is thus
ϕ ¨ sin θ = − 2 θ ˙ ϕ ˙ cos θ {\displaystyle {\ddot {\phi }}\,\sin \theta =-2\,{\dot {\theta }}\,{\dot {\phi }}\,\cos \theta } .The azimuth ϕ {\displaystyle \phi } , being absent from the Lagrangian, is a cyclic coordinate , which implies that its conjugate momentum is a constant of motion .
The conical pendulum refers to the special solutions where θ ˙ = 0 {\displaystyle {\dot {\theta }}=0} and ϕ ˙ {\displaystyle {\dot {\phi }}} is a constant not depending on time.
Hamiltonian mechanics The Hamiltonian is
H = P θ θ ˙ + P ϕ ϕ ˙ − L {\displaystyle H=P_{\theta }{\dot {\theta }}+P_{\phi }{\dot {\phi }}-L} where conjugate momenta are
P θ = ∂ L ∂ θ ˙ = m l 2 ⋅ θ ˙ {\displaystyle P_{\theta }={\frac {\partial L}{\partial {\dot {\theta }}}}=ml^{2}\cdot {\dot {\theta }}} and
P ϕ = ∂ L ∂ ϕ ˙ = m l 2 sin 2 θ ⋅ ϕ ˙ {\displaystyle P_{\phi }={\frac {\partial L}{\partial {\dot {\phi }}}}=ml^{2}\sin ^{2}\!\theta \cdot {\dot {\phi }}} .In terms of coordinates and momenta it reads
H = [ 1 2 m l 2 θ ˙ 2 + 1 2 m l 2 sin 2 θ ϕ ˙ 2 ] ⏟ T + [ − m g l cos θ ] ⏟ V = P θ 2 2 m l 2 + P ϕ 2 2 m l 2 sin 2 θ − m g l cos θ {\displaystyle H=\underbrace {\left[{\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}ml^{2}\sin ^{2}\theta {\dot {\phi }}^{2}\right]} _{T}+\underbrace {{\bigg [}-mgl\cos \theta {\bigg ]}} _{V}={P_{\theta }^{2} \over 2ml^{2}}+{P_{\phi }^{2} \over 2ml^{2}\sin ^{2}\theta }-mgl\cos \theta }
Hamilton's equations will give time evolution of coordinates and momenta in four first-order differential equations
θ ˙ = P θ m l 2 {\displaystyle {\dot {\theta }}={P_{\theta } \over ml^{2}}} ϕ ˙ = P ϕ m l 2 sin 2 θ {\displaystyle {\dot {\phi }}={P_{\phi } \over ml^{2}\sin ^{2}\theta }} P θ ˙ = P ϕ 2 m l 2 sin 3 θ cos θ − m g l sin θ {\displaystyle {\dot {P_{\theta }}}={P_{\phi }^{2} \over ml^{2}\sin ^{3}\theta }\cos \theta -mgl\sin \theta } P ϕ ˙ = 0 {\displaystyle {\dot {P_{\phi }}}=0} Momentum P ϕ {\displaystyle P_{\phi }} is a constant of motion. That is a consequence of the rotational symmetry of the system around the vertical axis.[dubious – discuss ]
Trajectory Trajectory of a spherical pendulum. Trajectory of the mass on the sphere can be obtained from the expression for the total energy
E = [ 1 2 m l 2 θ ˙ 2 + 1 2 m l 2 sin 2 θ ϕ ˙ 2 ] ⏟ T + [ − m g l cos θ ] ⏟ V {\displaystyle E=\underbrace {\left[{\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}ml^{2}\sin ^{2}\theta {\dot {\phi }}^{2}\right]} _{T}+\underbrace {{\bigg [}-mgl\cos \theta {\bigg ]}} _{V}} by noting that the horizontal component of angular momentum L z = m l 2 sin 2 θ ϕ ˙ {\displaystyle L_{z}=ml^{2}\sin ^{2}\!\theta \,{\dot {\phi }}} is a constant of motion, independent of time. This is true because neither gravity nor the reaction from the sphere act in directions that would affect this component of angular momentum.
Hence
E = 1 2 m l 2 θ ˙ 2 + 1 2 L z 2 m l 2 sin 2 θ − m g l cos θ {\displaystyle E={\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}-mgl\cos \theta } ( d θ d t ) 2 = 2 m l 2 [ E − 1 2 L z 2 m l 2 sin 2 θ + m g l cos θ ] {\displaystyle \left({\frac {d\theta }{dt}}\right)^{2}={\frac {2}{ml^{2}}}\left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]} which leads to an elliptic integral of the first kind for θ {\displaystyle \theta }
t ( θ ) = 1 2 m l 2 ∫ [ E − 1 2 L z 2 m l 2 sin 2 θ + m g l cos θ ] − 1 2 d θ {\displaystyle t(\theta )={\sqrt {{\tfrac {1}{2}}ml^{2}}}\int \left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]^{-{\frac {1}{2}}}\,d\theta } and an elliptic integral of the third kind for ϕ {\displaystyle \phi }
ϕ ( θ ) = L z l 2 m ∫ sin − 2 θ [ E − 1 2 L z 2 m l 2 sin 2 θ + m g l cos θ ] − 1 2 d θ {\displaystyle \phi (\theta )={\frac {L_{z}}{l{\sqrt {2m}}}}\int \sin ^{-2}\theta \left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]^{-{\frac {1}{2}}}\,d\theta } .The angle θ {\displaystyle \theta } lies between two circles of latitude, where
E > 1 2 L z 2 m l 2 sin 2 θ − m g l cos θ {\displaystyle E>{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}-mgl\cos \theta } .
See also
References
Further reading Weinstein, Alexander (1942). "The spherical pendulum and complex integration". The American Mathematical Monthly . 49 (8): 521– 523. doi :10.1080/00029890.1942.11991275 . Kohn, Walter (1946). "Contour integration in the theory of the spherical pendulum and the heavy symmetrical top" . Transactions of the American Mathematical Society . 59 (1): 107– 131. doi :10.2307/1990314 . JSTOR 1990314 . Olsson, M. G. (1981). "Spherical pendulum revisited". American Journal of Physics . 49 (6): 531– 534. Bibcode :1981AmJPh..49..531O . doi :10.1119/1.12666 . Horozov, Emil (1993). "On the isoenergetical non-degeneracy of the spherical pendulum". Physics Letters A . 173 (3): 279– 283. Bibcode :1993PhLA..173..279H . doi :10.1016/0375-9601(93)90279-9 . Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan (1996). "Spherical pendulum, actions and spin" . J. Phys. Chem . 100 (49): 19124– 19135. doi :10.1021/jp9617128 . S2CID 18023607 . Shiriaev, A. S.; Ludvigsen, H.; Egeland, O. (2004). "Swinging up the spherical pendulum via stabilization of its first integrals". Automatica . 40 : 73– 85. doi :10.1016/j.automatica.2003.07.009 . Essen, Hanno; Apazidis, Nicholas (2009). "Turning points of the spherical pendulum and the golden ratio". European Journal of Physics . 30 (2): 427– 432. Bibcode :2009EJPh...30..427E . doi :10.1088/0143-0807/30/2/021 . S2CID 121216295 . Dullin, Holger R. (2013). "Semi-global symplectic invariants of the spherical pendulum" . Journal of Differential Equations . 254 (7): 2942– 2963. arXiv :1108.4962 . Bibcode :2013JDE...254.2942D . doi :10.1016/j.jde.2013.01.018 .