Standard-gauge railway
Track gauge | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
By transport mode | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
By size (list) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Change of gauge | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
By location | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
A standard-gauge railway is a railway with a track gauge of 1,435 mm (4 ft 8+1⁄2 in). The standard gauge is also called Stephenson gauge (after George Stephenson), international gauge, UIC gauge, uniform gauge, normal gauge in Europe, and SGR in East Africa. It is the most widely used track gauge around the world, with about 55% of the lines in the world using it.
All high-speed rail lines use standard gauge except those in Russia, Finland, Uzbekistan, and some line sections in Spain. The distance between the inside edges of the heads of the rails is defined to be 1,435 mm except in the United States, Canada, and on some heritage British lines, where it is defined in U.S. customary/British Imperial units as exactly "four feet eight and one half inches", which is equivalent to 1,435.1 mm.
History
As railways developed and expanded, one of the key issues was the track gauge (the distance, or width, between the inner sides of the rail heads) to be used, as the wheels of the rolling stock (locomotives, cars, etc.) must match this distance. Different railways used different gauges, and where track of different gauges met – a "gauge break" – loads had to be unloaded from one set of rail cars and reloaded onto another, a time-consuming and expensive process. The result was the adoption throughout a large part of the world of a "standard gauge" of 1,435 mm (4 ft 8+1⁄2 in), allowing interconnectivity and interoperability.
Origins
A popular legend that has circulated since at least 1937 traces the origin of the 1,435 mm (4 ft 8+1⁄2 in) gauge even further back than the coalfields of northern England, pointing to the evidence of rutted roads marked by chariot wheels dating from the Roman Empire. Snopes categorised this legend as "false", but commented that it "is perhaps more fairly labeled as 'Partly true, but for trivial and unremarkable reasons.'" The historical tendency to place the wheels of horse-drawn vehicles around 5 ft (1,524 mm) apart probably derives from the width needed to fit a carthorse in between the shafts. Research, however, has been undertaken to support the hypothesis that "the origin of the standard gauge of the railway might result from an interval of wheel ruts of prehistoric ancient carriages".
In addition, while road-travelling vehicles are typically measured from the outermost portions of the wheel rims, it became apparent that for vehicles travelling on rails, having main wheel flanges that fit inside the rails is better, thus the minimum distance between the wheels (and, by extension, the inside faces of the rail heads) was the important one.
A standard gauge for horse railways never existed, but rough groupings were used; in the north of England none was less than 4 ft (1,219 mm). Wylam colliery's system, built before 1763, was 5 ft (1,524 mm), as was John Blenkinsop's Middleton Railway; the old 4 ft (1,219 mm) plateway was relaid to 5 ft (1,524 mm) so that Blenkinsop's engine could be used. Others were 4 ft 4 in (1,321 mm) (in Beamish) or4 ft 7+1⁄2 in (1,410 mm) (in Bigges Main (in Wallsend), Kenton, and Coxlodge).
English railway pioneer George Stephenson spent much of his early engineering career working for the coal mines of County Durham. He favoured 4 ft 8 in (1,422 mm) for wagonways in Northumberland and Durham, and used it on his Killingworth line. The Hetton and Springwell wagonways also used this gauge.
Stephenson's Stockton and Darlington railway (S&DR) was built primarily to transport coal from mines near Shildon to the port at Stockton-on-Tees. Opening in 1825, the initial gauge of 4 ft 8 in (1,422 mm) was set to accommodate the existing gauge of hundreds of horse-drawn chaldron wagons that were already in use on the wagonways in the mines. The railway used this gauge for 15 years before a change was made, debuting around 1850, to the 1,435 mm (4 ft 8+1⁄2 in) gauge.[page needed] The historic Mount Washington Cog Railway, the world's first mountain-climbing rack railway, is still in operation in the 21st century, and has used the earlier 4 ft 8 in (1,422 mm) gauge since its inauguration in 1868.
George Stephenson introduced the 1,435 mm (4 ft 8+1⁄2 in) gauge (including a belated extra1⁄2 in (13 mm) of free movement to reduce binding on curves) for the Liverpool and Manchester Railway, authorised in 1826 and opened 30 September 1830. The extra half inch was not regarded at first as very significant, and some early trains ran on both gauges daily without compromising safety.
The success of this project led to Stephenson and his son Robert being employed to engineer several other larger railway projects. Thus the4 ft 8+1⁄2 in (1,435 mm) gauge became widespread and dominant in Britain. Robert was reported to have said that if he had had a second chance to choose a gauge, he would have chosen one wider than4 ft 8+1⁄2 in (1,435 mm). "I would take a few inches more, but a very few".
During the "gauge war" with the Great Western Railway, standard gauge was called "narrow gauge", in contrast to the Great Western's7 ft 1⁄4 in (2,140 mm) broad gauge. The modern use of the term "narrow gauge" for gauges less than standard did not arise for many years, until the first such locomotive-hauled passenger railway, the Ffestiniog Railway, was built.
Adoption
In 1845, in the United Kingdom of Great Britain and Ireland, a Royal Commission on Railway Gauges reported in favour of a standard gauge. The subsequent Gauge Act ruled that new passenger-carrying railways in Great Britain should be built to a standard gauge of4 ft 8+1⁄2 in (1,435 mm), and those in Ireland to a new standard gauge of 5 ft 3 in (1,600 mm). In Great Britain, Stephenson's gauge was chosen on the grounds that existing lines of this gauge were eight times longer than those of the rival 7 ft or 2,134 mm (later7 ft 1⁄4 in or 2,140 mm) gauge adopted principally by the Great Western Railway. It allowed the broad-gauge companies in Great Britain to continue with their tracks and expand their networks within the "Limits of Deviation" and the exceptions defined in the Act.
After an intervening period of mixed-gauge operation (tracks were laid with three rails), the Great Western Railway finally completed the conversion of its network to standard gauge in 1892. In North East England, some early lines in colliery (coal mining) areas were 4 ft 8 in (1,422 mm), while in Scotland some early lines were 4 ft 6 in (1,372 mm). The British gauges converged starting from 1846 as the advantages of equipment interchange became increasingly apparent. By the 1890s, the entire network was converted to standard gauge.
The Royal Commission made no comment about small lines narrower than standard gauge (to be called "narrow gauge"), such as the Ffestiniog Railway. Thus it permitted a future multiplicity of narrow gauges in the UK. It also made no comments about future gauges in British colonies, which allowed various gauges to be adopted across the colonies.
Parts of the United States, mainly in the Northeast, adopted the same gauge, because some early trains were purchased from Britain. The American gauges converged, as the advantages of equipment interchange became increasingly apparent. Notably, all the 5 ft (1,524 mm) broad gauge track in the South was converted to "almost standard" gauge 4 ft 9 in (1,448 mm) over the course of two days beginning on 31 May 1886. See Track gauge in the United States.
In continental Europe, France and Belgium adopted a 1,500 mm (4 ft 11+1⁄16 in) gauge (measured between the midpoints of each rail's profile) for their early railways. The gauge between the interior edges of the rails (the measurement adopted from 1844) differed slightly between countries, and even between networks within a country (for example, 1,440 mm or4 ft 8+11⁄16 in to 1,445 mm or4 ft 8+7⁄8 in in France). The first tracks in Austria and in the Netherlands had other gauges (1,000 mm or3 ft 3+3⁄8 in in Austria for the Donau Moldau line and 1,945 mm or6 ft 4+9⁄16 in in the Netherlands for the Hollandsche IJzeren Spoorweg-Maatschappij), but for interoperability reasons (the first rail service between Paris and Berlin began in 1849, first Chaix timetable) Germany adopted standard gauges, as did most other European countries.
The modern method of measuring rail gauge was agreed in the first Berne rail convention of 1886.
Early railways by gauge
Non-standard gauge
Almost standard gauge
- The Huddersfield Corporation Tramways, used4 ft 7+3⁄4 in (1,416 mm)
- The Portsdown and Horndean Light Railway, used4 ft 7+3⁄4 in (1,416 mm)
- The Portsmouth Corporation Transport, used4 ft 7+3⁄4 in (1,416 mm)
- The Killingworth colliery railway, used 4 ft 8 in (1,422 mm).
- The Hetton colliery railway, opened 1822, used 4 ft 8 in (1,422 mm).
- The Stockton and Darlington Railway, authorised 1821, opened 1825, used 4 ft 8 in (1,422 mm).
- The New Orleans and Carrollton Railroad used 4 ft 8 in (1,422 mm)
- The Pontchartrain Railroad used 4 ft 8 in (1,422 mm)
- The trams in Nuremberg nominally used 1,432 mm (4 ft 8+3⁄8 in) during much of their existence, but have since been converted to standard gauge in name as well as fact.
Standard gauge
Small deviations from standard gauge
- The Manchester and Leeds Railway, authorised on 4 July 1836, used 4 ft 9 in (1,448 mm).
- The 4 ft 9 in (1,448 mm) railways were intended to take4 ft 8+1⁄2 in (1,435 mm) gauge vehicles and allow a (second) running tolerance.
- The Chester and Birkenhead Railway, authorised on 12 July 1837, used 4 ft 9 in (1,448 mm).
- The London and Brighton Railway, authorised on 15 July 1837, used 4 ft 9 in (1,448 mm).
- The Manchester and Birmingham Railway, authorised on 30 June 1837, used 4 ft 9 in (1,448 mm).
- The Pennsylvania Railroad originally used 4 ft 9 in (1,448 mm)
- The trams in Dresden, authorised in 1872 as horsecars, used 1,440 mm (4 ft 8+11⁄16 in) gauge vehicles. Converted to 600 V DC electric trams in 1893, they now use 1,450 mm (4 ft 9+3⁄32 in); both gauges are within the tolerance for standard gauge.
- The Ohio gauge of 4 ft 10 in (1,473 mm)
Dual gauge
- Cheltenham and Great Western Union Railway, authorised 1836, opened 1840, dual gauge 18434 ft 8+1⁄2 in (1,435 mm) standard gauge and7 ft 1⁄4 in (2,140 mm).
Initially standard gauge
Several lines were initially built as standard gauge but were later converted to another gauge for cost or for compatibility reasons.
- South Africa became 1,067 mm (3 ft 6 in)
- Thailand became 1,000 mm (3 ft 3+3⁄8 in)
- Indonesia became 1,067 mm (3 ft 6 in)
- Ireland became 1,600 mm (5 ft 3 in) – Dublin and Kingstown Railway
- Australia became 1,600 mm (5 ft 3 in) – Victoria & South Australia – partly converted to 1,435 mm (4 ft 8+1⁄2 in)
- India became 1,676 mm (5 ft 6 in) – initial freight lines
- some private Japanese railways
Modern almost standard gauge railways
- The Toronto Transit Commission uses a Toronto gauge of4 ft 10+7⁄8 in (1,495 mm) on its streetcar and heavy-rail subway lines, which was actually closer to 1,520 mm (4 ft 11+27⁄32 in) gauge.
- The Toronto Transit Commission light-metro lines and light-rail lines (whether existing, under construction or proposed) use standard gauge.
- Trams in Leipzig, Germany use 1,458 mm (4 ft 9+13⁄32 in).
- Trams in Dresden, Germany use 1,450 mm (4 ft 9+3⁄32 in).
- 1,445 mm (4 ft 8+7⁄8 in) gauge is in use on several urban rail transit systems in Europe:
- Trams in Italy
- Madrid Metro (only metro system. Light rail system uses standard gauge.)
- The MTR in Hong Kong uses 1,432 mm (4 ft 8+3⁄8 in) gauge on lines owned by the MTR Corporation. However, lines formerly operated (but which continue to be owned) by the Kowloon-Canton Railway Corporation, including the Light Rail network, use 1,435 mm (4 ft 8+1⁄2 in) gauge. New lines and extensions to the MTR after 2014 use 1,435 mm (4 ft 8+1⁄2 in) gauge, including the South Island line, Kwun Tong line extension and West Island line.
- The Bucharest Metro uses 1,432 mm (4 ft 8+3⁄8 in) gauge.
- The Washington Metro uses 4 ft 8+1⁄4 in (1,429 mm),1⁄4 in (6 mm) narrower than standard gauge.
- The Mount Washington Cog Railway, the world's oldest mountain-climbing rack-and-pinion railway, uses a 4 ft 8 in (1,422 mm) gauge.
Railways
Non-rail use
Several states in the United States had laws requiring road vehicles to have a consistent gauge to allow them to follow ruts in the road. Those gauges were similar to railway standard gauge.
See also
- Standard Gauge (toy trains)
- List of track gauges § Standard gauge
- List of tram systems by gauge and electrification
- Track gauge
- Regulating the Gauge of Railways Act 1846
Notes
References
Bibliography
External links
- "The Sydney Morning Herald". The Sydney Morning Herald. 23 May 1892. p. 4. Retrieved 14 August 2011 – via National Library of Australia., a discussion of gauge in Australia c. 1892
- "Standard Railway Gauge". Townsville Bulletin. 5 October 1937. p. 12. Retrieved 19 March 2014 – via National Library of Australia., a discussion of the Roman gauge origin theory.