Approximately continuous function

In mathematics, particularly in mathematical analysis and measure theory, an approximately continuous function is a concept that generalizes the notion of continuous functions by replacing the ordinary limit with an approximate limit. This generalization provides insights into measurable functions with applications in real analysis and geometric measure theory.

Definition

Let be a Lebesgue measurable set, be a measurable function, and be a point where the Lebesgue density of is 1. The function is said to be approximately continuous at if and only if the approximate limit of at exists and equals .

Properties

A fundamental result in the theory of approximately continuous functions is derived from Lusin's theorem, which states that every measurable function is approximately continuous at almost every point of its domain. The concept of approximate continuity can be extended beyond measurable functions to arbitrary functions between metric spaces. The Stepanov-Denjoy theorem provides a remarkable characterization:

Approximately continuous functions are intimately connected to Lebesgue points. For a function , a point is a Lebesgue point if it is a point of Lebesgue density 1 for and satisfies

where denotes the Lebesgue measure and represents the ball of radius centered at . Every Lebesgue point of a function is necessarily a point of approximate continuity. The converse relationship holds under additional constraints: when is essentially bounded, its points of approximate continuity coincide with its Lebesgue points.

See also

References

Uses material from the Wikipedia article Approximately continuous function, released under the CC BY-SA 4.0 license.