Graph of H n ( x ) {\displaystyle \mathrm {H} _{n}(x)} for n ∈ [ 0 , 1 , 2 , 3 , 4 , 5 ] {\displaystyle n\in [0,1,2,3,4,5]} In mathematics , the Struve functions H α (x ) , are solutions y (x ) of the non-homogeneous Bessel's differential equation :
x 2 d 2 y d x 2 + x d y d x + ( x 2 − α 2 ) y = 4 ( x 2 ) α + 1 π Γ ( α + 1 2 ) {\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+\left(x^{2}-\alpha ^{2}\right)y={\frac {4\left({\frac {x}{2}}\right)^{\alpha +1}}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}} introduced by Hermann Struve (1882 ). The complex number α is the order of the Struve function, and is often an integer.
And further defined its second-kind version K α ( x ) {\displaystyle \mathbf {K} _{\alpha }(x)} as K α ( x ) = H α ( x ) − Y α ( x ) {\displaystyle \mathbf {K} _{\alpha }(x)=\mathbf {H} _{\alpha }(x)-Y_{\alpha }(x)} , where Y α ( x ) {\displaystyle Y_{\alpha }(x)} is the Neumann function .
The modified Struve functions L α (x ) are equal to −ie −iαπ / 2 H α (ix ) and are solutions y (x ) of the non-homogeneous Bessel's differential equation :
Plot of the Struve function H n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D x 2 d 2 y d x 2 + x d y d x − ( x 2 + α 2 ) y = 4 ( x 2 ) α + 1 π Γ ( α + 1 2 ) {\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}-\left(x^{2}+\alpha ^{2}\right)y={\frac {4\left({\frac {x}{2}}\right)^{\alpha +1}}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}} And further defined its second-kind version M α ( x ) {\displaystyle \mathbf {M} _{\alpha }(x)} as M α ( x ) = L α ( x ) − I α ( x ) {\displaystyle \mathbf {M} _{\alpha }(x)=\mathbf {L} _{\alpha }(x)-I_{\alpha }(x)} , where I α ( x ) {\displaystyle I_{\alpha }(x)} is the modified Bessel function .
Definitions Since this is a non-homogeneous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogeneous solutions are the Bessel functions , and the particular solution may be chosen as the corresponding Struve function.
Power series expansion Struve functions, denoted as H α (z ) have the power series form
H α ( z ) = ∑ m = 0 ∞ ( − 1 ) m Γ ( m + 3 2 ) Γ ( m + α + 3 2 ) ( z 2 ) 2 m + α + 1 , {\displaystyle \mathbf {H} _{\alpha }(z)=\sum _{m=0}^{\infty }{\frac {(-1)^{m}}{\Gamma \left(m+{\frac {3}{2}}\right)\Gamma \left(m+\alpha +{\frac {3}{2}}\right)}}\left({\frac {z}{2}}\right)^{2m+\alpha +1},} where Γ(z ) is the gamma function .
The modified Struve functions, denoted L α (z ) , have the following power series form
L α ( z ) = ∑ m = 0 ∞ 1 Γ ( m + 3 2 ) Γ ( m + α + 3 2 ) ( z 2 ) 2 m + α + 1 . {\displaystyle \mathbf {L} _{\alpha }(z)=\sum _{m=0}^{\infty }{\frac {1}{\Gamma \left(m+{\frac {3}{2}}\right)\Gamma \left(m+\alpha +{\frac {3}{2}}\right)}}\left({\frac {z}{2}}\right)^{2m+\alpha +1}.} Plot of the modified Struve function L n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Another definition of the Struve function, for values of α satisfying Re(α ) > − 1 / 2 , is possible expressing in term of the Poisson's integral representation:
H α ( x ) = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 1 ( 1 − t 2 ) α − 1 2 sin x t d t = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 π 2 sin ( x cos τ ) sin 2 α τ d τ = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 π 2 sin ( x sin τ ) cos 2 α τ d τ {\displaystyle \mathbf {H} _{\alpha }(x)={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{1}(1-t^{2})^{\alpha -{\frac {1}{2}}}\sin xt~dt={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}\sin(x\cos \tau )\sin ^{2\alpha }\tau ~d\tau ={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}\sin(x\sin \tau )\cos ^{2\alpha }\tau ~d\tau }
K α ( x ) = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 ∞ ( 1 + t 2 ) α − 1 2 e − x t d t = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 ∞ e − x sinh τ cosh 2 α τ d τ {\displaystyle \mathbf {K} _{\alpha }(x)={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\infty }(1+t^{2})^{\alpha -{\frac {1}{2}}}e^{-xt}~dt={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\infty }e^{-x\sinh \tau }\cosh ^{2\alpha }\tau ~d\tau }
L α ( x ) = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 1 ( 1 − t 2 ) α − 1 2 sinh x t d t = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 π 2 sinh ( x cos τ ) sin 2 α τ d τ = 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 π 2 sinh ( x sin τ ) cos 2 α τ d τ {\displaystyle \mathbf {L} _{\alpha }(x)={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{1}(1-t^{2})^{\alpha -{\frac {1}{2}}}\sinh xt~dt={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}\sinh(x\cos \tau )\sin ^{2\alpha }\tau ~d\tau ={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}\sinh(x\sin \tau )\cos ^{2\alpha }\tau ~d\tau }
M α ( x ) = − 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 1 ( 1 − t 2 ) α − 1 2 e − x t d t = − 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 π 2 e − x cos τ sin 2 α τ d τ = − 2 ( x 2 ) α π Γ ( α + 1 2 ) ∫ 0 π 2 e − x sin τ cos 2 α τ d τ {\displaystyle \mathbf {M} _{\alpha }(x)=-{\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{1}(1-t^{2})^{\alpha -{\frac {1}{2}}}e^{-xt}~dt=-{\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}e^{-x\cos \tau }\sin ^{2\alpha }\tau ~d\tau =-{\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}e^{-x\sin \tau }\cos ^{2\alpha }\tau ~d\tau }
For small x , the power series expansion is given above .
For large x , one obtains:
H α ( x ) − Y α ( x ) = ( x 2 ) α − 1 π Γ ( α + 1 2 ) + O ( ( x 2 ) α − 3 ) , {\displaystyle \mathbf {H} _{\alpha }(x)-Y_{\alpha }(x)={\frac {\left({\frac {x}{2}}\right)^{\alpha -1}}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}+O\left(\left({\tfrac {x}{2}}\right)^{\alpha -3}\right),} where Yα (x ) is the Neumann function .
Properties The Struve functions satisfy the following recurrence relations:
H α − 1 ( x ) + H α + 1 ( x ) = 2 α x H α ( x ) + ( x 2 ) α π Γ ( α + 3 2 ) , H α − 1 ( x ) − H α + 1 ( x ) = 2 d d x ( H α ( x ) ) − ( x 2 ) α π Γ ( α + 3 2 ) . {\displaystyle {\begin{aligned}\mathbf {H} _{\alpha -1}(x)+\mathbf {H} _{\alpha +1}(x)&={\frac {2\alpha }{x}}\mathbf {H} _{\alpha }(x)+{\frac {\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {3}{2}}\right)}},\\\mathbf {H} _{\alpha -1}(x)-\mathbf {H} _{\alpha +1}(x)&=2{\frac {d}{dx}}\left(\mathbf {H} _{\alpha }(x)\right)-{\frac {\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {3}{2}}\right)}}.\end{aligned}}}
Relation to other functions Struve functions of integer order can be expressed in terms of Weber functions E n and vice versa: if n is a non-negative integer then
E n ( z ) = 1 π ∑ k = 0 ⌊ n − 1 2 ⌋ Γ ( k + 1 2 ) ( z 2 ) n − 2 k − 1 Γ ( n − k + 1 2 ) − H n ( z ) , E − n ( z ) = ( − 1 ) n + 1 π ∑ k = 0 ⌈ n − 3 2 ⌉ Γ ( n − k − 1 2 ) ( z 2 ) − n + 2 k + 1 Γ ( k + 3 2 ) − H − n ( z ) . {\displaystyle {\begin{aligned}\mathbf {E} _{n}(z)&={\frac {1}{\pi }}\sum _{k=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }{\frac {\Gamma \left(k+{\frac {1}{2}}\right)\left({\frac {z}{2}}\right)^{n-2k-1}}{\Gamma \left(n-k+{\frac {1}{2}}\right)}}-\mathbf {H} _{n}(z),\\\mathbf {E} _{-n}(z)&={\frac {(-1)^{n+1}}{\pi }}\sum _{k=0}^{\left\lceil {\frac {n-3}{2}}\right\rceil }{\frac {\Gamma (n-k-{\frac {1}{2}})\left({\frac {z}{2}}\right)^{-n+2k+1}}{\Gamma \left(k+{\frac {3}{2}}\right)}}-\mathbf {H} _{-n}(z).\end{aligned}}} Struve functions of order n +1 / 2 where n is an integer can be expressed in terms of elementary functions. In particular if n is a non-negative integer then
H − n − 1 2 ( z ) = ( − 1 ) n J n + 1 2 ( z ) , {\displaystyle \mathbf {H} _{-n-{\frac {1}{2}}}(z)=(-1)^{n}J_{n+{\frac {1}{2}}}(z),} where the right hand side is a spherical Bessel function .
Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function 1 F 2 :
H α ( z ) = z α + 1 2 α π Γ ( α + 3 2 ) 1 F 2 ( 1 ; 3 2 , α + 3 2 ; − z 2 4 ) . {\displaystyle \mathbf {H} _{\alpha }(z)={\frac {z^{\alpha +1}}{2^{\alpha }{\sqrt {\pi }}\Gamma \left(\alpha +{\tfrac {3}{2}}\right)}}{}_{1}F_{2}\left(1;{\tfrac {3}{2}},\alpha +{\tfrac {3}{2}};-{\tfrac {z^{2}}{4}}\right).}
Applications The Struve and Weber functions were shown to have an application to beamforming in., and in describing the effect of confining interface on Brownian motion of colloidal particles at low Reynolds numbers.
References R. M. Aarts and Augustus J. E. M. Janssen (2003). "Approximation of the Struve function H 1 occurring in impedance calculations". J. Acoust. Soc. Am . 113 (5): 2635– 2637. Bibcode :2003ASAJ..113.2635A . doi :10.1121/1.1564019 . PMID 12765381 . R. M. Aarts and Augustus J. E. M. Janssen (2016). "Efficient approximation of the Struve functions H n occurring in the calculation of sound radiation quantities" . J. Acoust. Soc. Am . 140 (6): 4154– 4160. Bibcode :2016ASAJ..140.4154A . doi :10.1121/1.4968792 . PMID 28040027 . Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 12" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 496. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 .Ivanov, A. B. (2001) [1994], "Struve function" , Encyclopedia of Mathematics , EMS Press Paris, R. B. (2010), "Struve function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .Struve, H. (1882). "Beitrag zur Theorie der Diffraction an Fernröhren" . Annalen der Physik und Chemie . 17 (13): 1008– 1016. Bibcode :1882AnP...253.1008S . doi :10.1002/andp.18822531319 .
External links