Low-temperature technology timeline

The following is a timeline of low-temperature technology and cryogenic technology (refrigeration down to close to absolute zero, i.e. –273.15 °C, −459.67 °F or 0 K). It also lists important milestones in thermometry, thermodynamics, statistical physics and calorimetry, that were crucial in development of low temperature systems.

Prior to the 19th century

  • c. 1700 BCZimri-Lim, ruler of Mari in Syria commanded the construction of one of the first ice houses near the Euphrates.
  • c. 500 BC – The yakhchal (meaning "ice pit" in Persian) is an ancient Persian type of refrigerator. The structure was formed from a mortar resistant to heat transmission, in the shape of a dome. Snow and ice was stored beneath the ground, effectively allowing access to ice even in hot months and allowing for prolonged food preservation. Often a badgir was coupled with the yakhchal in order to slow the heat loss. Modern refrigerators are still called yakhchal in Persian.
  • c. 60 ADHero of Alexandria knew of the principle that certain substances, notably air, expand and contract and described a demonstration in which a closed tube partially filled with air had its end in a container of water. The expansion and contraction of the air caused the position of the water/air interface to move along the tube. This was the first established principle of gas behaviour vs temperature, and principle of first thermometers later on. The idea could predate him even more (Empedocles of Agrigentum in his 460 B.C. book On Nature).
  • 1396 AD – Ice storage warehouses called "Dong-bing-go-tango" (meaning "east ice storage warehouse" in Korean) and Seo-bing-go ("west ice storage warehouse") were built in Han-Yang (currently Seoul, Korea). The buildings housed ice that was collected from the frozen Han River in January (by lunar calendar). The warehouse was well-insulated, providing the royal families with ice into the summer months. These warehouses were closed in 1898 AD but the buildings are still intact in Seoul.
  • 1593 – Galileo Galilei builds a first modern thermoscope. But it is possible the invention was by Santorio Santorio or independently around same time by Cornelis Drebbel. The principle of operation was known in ancient Greece.
  • c. 1611–1613 – Francesco Sagredo or Santorio Santorio, put a numerical scale on a thermoscope.
  • 1617 – Giuseppe Biancani publishes first clear diagram of thermoscope
  • 1638 – Robert Fludd describes thermometer with a scale, using air thermometer principle with column of air and liquid water.
  • 1650 – Otto von Guericke designed and built the world's first vacuum pump and created the world's first ever vacuum known as the Magdeburg hemispheres to disprove Aristotle's long-held supposition that 'Nature abhors a vacuum'.
  • 1656 – Robert Boyle and Robert Hooke built an air pump on this design.
  • 1662 – Boyle's law (gas law relating pressure and volume) is demonstrated using a vacuum pump
  • 1665 – Boyle theorizes a minimum temperature in New Experiments and Observations touching Cold.
  • 1679 – Denis Papinsafety valve
  • 1702 – Guillaume Amontons first calculates absolute zero to be −240 °C using an air thermometer of his own invention (1702), theorizing at this point the gas would reach zero volume and zero pressure.
  • 1714 – Daniel Gabriel Fahrenheit invented the first reliable thermometer, using mercury instead of alcohol and water mixtures
  • 1724 – Daniel Gabriel Fahrenheit proposes a Fahrenheit scale, which had finer scale and greater reproducibility than competitors.
  • 1730 – René Antoine Ferchault de Réaumur invented an alcohol thermometer and temperature scale ultimately proved to be less reliable than Fahrenheit's mercury thermometer.
  • 1742 – Anders Celsius proposed a scale with zero at the boiling point and 100 degrees at the freezing point of water. It was later changed to be the other way around, on the input from Swedish academy of science.
  • 1755 – William Cullen used a pump to create a partial vacuum over a container of diethyl ether, which then boiled, absorbing heat from the surrounding air.
  • 1756 – The first documented public demonstration of artificial refrigeration by William Cullen
  • 1782 – Antoine Lavoisier and Pierre-Simon Laplace invent the ice-calorimeter
  • 1784 – Gaspard Monge liquefied the first pure gas with Clouet producing liquid sulfur dioxide.
  • 1787 – Charles's law (Gas law, relating volume and temperature)
  • 1799 – Martin van Marum and Adriaan Paets van Troostwijk compressed ammonia to see if it followed Boyle's law. They found at room temperature and 7 atm gaseous ammonia condensed to a liquid.

19th century

20th century

21st century

  • 2000 – Nuclear spin temperatures below 100 pK were reported for an experiment at the Helsinki University of Technology's Low Temperature Lab in Espoo, Finland. However, this was the temperature of one particular degree of freedom – a quantum property called nuclear spin – not the overall average thermodynamic temperature for all possible degrees in freedom.
  • 2014 – Scientists in the CUORE collaboration at the Laboratori Nazionali del Gran Sasso in Italy cooled a copper vessel with a volume of one cubic meter to 0.006 kelvins (−273.144 °C; −459.659 °F) for 15 days, setting a record for the lowest temperature in the known universe over such a large contiguous volume
  • 2015 – Experimental physicists at Massachusetts Institute of Technology (MIT) successfully cooled molecules in a gas of sodium potassium to a temperature of 500 nanokelvins, and it is expected to exhibit an exotic state of matter by cooling these molecules a bit further.
  • 2015 – A team of atomic physicists from Stanford University used a matter-wave lensing technique to cool a sample of rubidium atoms to an effective temperature of 50 pK along two spatial dimensions.
  • 2017 - Cold Atom Laboratory (CAL), an experimental instrument launched to the International Space Station (ISS) in 2018. The instrument creates extremely cold conditions in the microgravity environment of the ISS leading to the formation of Bose Einstein Condensates that are a magnitude colder than those that are created in laboratories on Earth. In this space-based laboratory, up to 20 seconds interaction times and as low as 1 picokelvin (K) temperatures are projected to be achievable, and it could lead to exploration of unknown quantum mechanical phenomena and test some of the most fundamental laws of physics.

See also

References

Uses material from the Wikipedia article Low-temperature technology timeline, released under the CC BY-SA 4.0 license.