Transition-rate matrix

In probability theory, a transition-rate matrix (also known as a Q-matrix, intensity matrix, or infinitesimal generator matrix) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.

In a transition-rate matrix (sometimes written ), element (for ) denotes the rate departing from and arriving in state . The rates , and the diagonal elements are defined such that

,

and therefore the rows of the matrix sum to zero.

Up to a global sign, a large class of examples of such matrices is provided by the Laplacian of a directed, weighted graph. The vertices of the graph correspond to the Markov chain's states.

Properties

The transition-rate matrix has following properties:

  • There is at least one eigenvector with a vanishing eigenvalue, exactly one if the graph of is strongly connected.
  • All other eigenvalues fulfill .
  • All eigenvectors with a non-zero eigenvalue fulfill .
  • The Transition-rate matrix satisfies the relation where P(t) is the continuous stochastic matrix.

Example

An M/M/1 queue, a model which counts the number of jobs in a queueing system with arrivals at rate λ and services at rate μ, has transition-rate matrix

See also

References


Uses material from the Wikipedia article Transition-rate matrix, released under the CC BY-SA 4.0 license.