Universal chord theorem

A chord (in red) of length 0.3 on a sinusoidal function. The universal chord theorem guarantees the existence of chords of length 1/n for functions satisfying certain conditions.

In mathematical analysis, the universal chord theorem states that if a function f is continuous on [a,b] and satisfies , then for every natural number , there exists some such that .

History

The theorem was published by Paul Lévy in 1934 as a generalization of Rolle's theorem.

Statement of the theorem

Let denote the chord set of the function f. If f is a continuous function and , then for all natural numbers n.

Case of n = 2

The case when n = 2 can be considered an application of the Borsuk–Ulam theorem to the real line. It says that if is continuous on some interval with the condition that , then there exists some such that .

In less generality, if is continuous and , then there exists that satisfies .

Proof of n = 2

Consider the function defined by . Being the sum of two continuous functions, is continuous, . It follows that and by applying the intermediate value theorem, there exists such that , so that . This concludes the proof of the theorem for .

Proof of general case

The proof of the theorem in the general case is very similar to the proof for Let be a non negative integer, and consider the function defined by . Being the sum of two continuous functions, is continuous. Furthermore, . It follows that there exists integers such that The intermediate value theorems gives us c such that and the theorem follows.

References

Uses material from the Wikipedia article Universal chord theorem, released under the CC BY-SA 4.0 license.