Vector measure
In mathematics, a vector measure is a function defined on a family of sets and taking vector values satisfying certain properties. It is a generalization of the concept of finite measure, which takes nonnegative real values only.
Definitions and first consequences
Given a field of sets and a Banach space a finitely additive vector measure (or measure, for short) is a function such that for any two disjoint sets and in one has
A vector measure is called countably additive if for any sequence of disjoint sets in such that their union is in it holds that with the series on the right-hand side convergent in the norm of the Banach space
It can be proved that an additive vector measure is countably additive if and only if for any sequence as above one has
* |
where is the norm on
Countably additive vector measures defined on sigma-algebras are more general than finite measures, finite signed measures, and complex measures, which are countably additive functions taking values respectively on the real interval the set of real numbers, and the set of complex numbers.
Examples
Consider the field of sets made up of the interval together with the family of all Lebesgue measurable sets contained in this interval. For any such set define where is the indicator function of Depending on where is declared to take values, two different outcomes are observed.
- viewed as a function from to the -space is a vector measure which is not countably-additive.
- viewed as a function from to the -space is a countably-additive vector measure.
Both of these statements follow quite easily from the criterion (*) stated above.
The variation of a vector measure
Given a vector measure the variation of is defined as where the supremum is taken over all the partitions of into a finite number of disjoint sets, for all in Here, is the norm on
The variation of is a finitely additive function taking values in It holds that for any in If is finite, the measure is said to be of bounded variation. One can prove that if is a vector measure of bounded variation, then is countably additive if and only if is countably additive.
Lyapunov's theorem
In the theory of vector measures, Lyapunov's theorem states that the range of a (non-atomic) finite-dimensional vector measure is closed and convex. In fact, the range of a non-atomic vector measure is a zonoid (the closed and convex set that is the limit of a convergent sequence of zonotopes). It is used in economics, in ("bang–bang") control theory, and in statistical theory. Lyapunov's theorem has been proved by using the Shapley–Folkman lemma, which has been viewed as a discrete analogue of Lyapunov's theorem.
See also
- Bochner measurable function
- Bochner integral – Concept in mathematics
- Bochner space – Type of topological space
- Complex measure – Measure with complex values
- Signed measure – Generalized notion of measure in mathematics
- Vector-valued functions – Function valued in a vector space; typically a real or complex one
- Weakly measurable function
References
Bibliography
- Cohn, Donald L. (1997) [1980]. Measure theory (reprint ed.). Boston–Basel–Stuttgart: Birkhäuser Verlag. pp. IX+373. ISBN 3-7643-3003-1. Zbl 0436.28001.
- Diestel, Joe; Uhl, Jerry J. Jr. (1977). Vector measures. Mathematical Surveys. Vol. 15. Providence, R.I: American Mathematical Society. pp. xiii+322. ISBN 0-8218-1515-6.
- Kluvánek, I., Knowles, G, Vector Measures and Control Systems, North-Holland Mathematics Studies 20, Amsterdam, 1976.
- van Dulst, D. (2001) [1994], "Vector measures", Encyclopedia of Mathematics, EMS Press
- Rudin, W (1973). Functional analysis. New York: McGraw-Hill. p. 114. ISBN 9780070542259.