Well-ordering theorem
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. One can conclude from the well-ordering theorem that every set is susceptible to transfinite induction, which is considered by mathematicians to be a powerful technique. One famous consequence of the theorem is the Banach–Tarski paradox.
History
Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought". However, it is considered difficult or even impossible to visualize a well-ordering of , the set of all real numbers; such a visualization would have to incorporate the axiom of choice. In 1904, Gyula Kőnig claimed to have proven that such a well-ordering cannot exist. A few weeks later, Felix Hausdorff found a mistake in the proof. It turned out, though, that in first-order logic the well-ordering theorem is equivalent to the axiom of choice, in the sense that the Zermelo–Fraenkel axioms with the axiom of choice included are sufficient to prove the well-ordering theorem, and conversely, the Zermelo–Fraenkel axioms without the axiom of choice but with the well-ordering theorem included are sufficient to prove the axiom of choice. (The same applies to Zorn's lemma.) In second-order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem.
There is a well-known joke about the three statements, and their relative amenability to intuition:
Proof from axiom of choice
The well-ordering theorem follows from the axiom of choice as follows.
Proof of axiom of choice
The axiom of choice can be proven from the well-ordering theorem as follows.
- To make a choice function for a collection of non-empty sets, , take the union of the sets in and call it . There exists a well-ordering of ; let be such an ordering. The function that to each set of associates the smallest element of , as ordered by (the restriction to of) , is a choice function for the collection .
An essential point of this proof is that it involves only a single arbitrary choice, that of ; applying the well-ordering theorem to each member of separately would not work, since the theorem only asserts the existence of a well-ordering, and choosing for each a well-ordering would require just as many choices as simply choosing an element from each . Particularly, if contains uncountably many sets, making all uncountably many choices is not allowed under the axioms of Zermelo-Fraenkel set theory without the axiom of choice.