where μ and σ are the mean and standard deviation of the unwrapped distribution, respectively. Expressing the above density function in terms of the characteristic function of the normal distribution yields:
The wrapped normal distribution may also be expressed in terms of the Jacobi triple product:
where and
Moments
In terms of the circular variable the circular moments of the wrapped normal distribution are the characteristic function of the normal distribution evaluated at integer arguments:
where is some interval of length . The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:
The mean angle is
and the length of the mean resultant is
The circular standard deviation, which is a useful measure of dispersion for the wrapped normal distribution and its close relative, the von Mises distribution is given by:
Estimation of parameters
A series of N measurements zn = eiθn drawn from a wrapped normal distribution may be used to estimate certain parameters of the distribution. The average of the series z is defined as
and its expectation value will be just the first moment:
In other words, z is an unbiased estimator of the first moment. If we assume that the mean μ lies in the interval [−π, π), then Arg z will be a (biased) estimator of the mean μ.
Viewing the zn as a set of vectors in the complex plane, the R2 statistic is the square of the length of the averaged vector:
and its expected value is:
In other words, the statistic
will be an unbiased estimator of e−σ2, and ln(1/Re2) will be a (biased) estimator of σ2
where is any interval of length . Defining and , the Jacobi triple product representation for the wrapped normal is:
where is the Euler function. The logarithm of the density of the wrapped normal distribution may be written:
Using the series expansion for the logarithm:
the logarithmic sums may be written as:
so that the logarithm of density of the wrapped normal distribution may be written as:
which is essentially a Fourier series in . Using the characteristic function representation for the wrapped normal distribution in the left side of the integral: