Alors que l'étage de descente se trouve à 21 mètres au-dessus du sol avec une vitesse horizontale nulle et une vitesse verticale descendante constante limitée à 0,75 m/s un système pyrotechnique désolidarise l'astromobile Perseverance de l'étage de descente. l'astromobile descend suspendu au bout des 3 câbles longs de 7,50 mètres qui exercent leur traction près du barycentre de l'étage de descente pour éviter de perturber l'équilibre de celui-ci. Les roues du rover sont déployées. Un cordon ombilical relie par ailleurs le rover dont l'ordinateur contrôle le déroulement de l'opération et l'étage de descente. Sept secondes après le début de cette séquence, les câbles sont complètement déroulés.
Photo prise par le skycrane alors que celui-ci est en train de déposer Perseverance sur le sol martien.
La première photo de la surface de Mars en couleurs prise par Perseverance après l’atterrissage.
Photo du pont supérieur de l'astromobile prise par la caméra Mastcam-Z équipé d'un zoom.
Durant les 2 secondes qui suivent, les mouvements provoqués par l'interruption du déroulement des câbles sont amortis. Tout est alors prêt pour la prise du contact avec le sol. Celle-ci est détectée lorsque la traction sur les câbles diminue. Les moteurs réagissent immédiatement en réduisant fortement la poussée exercée jusque là pour maintenir une vitesse de descente constante. L'ordinateur de bord étudie sur une période d'une seconde l'évolution du comportement de l'étage de descente (valeur de la poussée des moteurs et variation de celle-ci), et en déduit que le rover est correctement posé sur le sol. Lorsque le contact avec le sol est confirmé, l'ordre de couper les suspentes au niveau du rover est donné. Puis l'étage de descente, désormais piloté par son propre processeur, entame une manœuvre qui l'écarte de la zone d'atterrissage : la poussée des moteurs est augmentée durant un certain laps de temps pour que l'étage de descente reprenne de l'altitude puis celui-ci modifie son orientation de 45° et ensuite augmente la poussée de ses moteurs jusqu'à 100 % et maintient ce mode de fonctionnement jusqu'à épuisement du carburant. Il est prévu que dans tous les cas de figure l'étage de descente s'écrase à au moins 150 mètres du lieu d'atterrissage du rover. De son côté l'astromobile détermine dès son arrivée sur le sol sa position avec une précision de 40 mètres contre trois kilomètres pour son prédécesseur Curiosity. L'astromobile Perseverance se pose le 18 février 2021 à 20 h 44 TU (21h44 heure française) après avoir parcouru 472 millions de kilomètres depuis la Terre en 203 jours. L'information parvient sur Terre 11 minutes plus tard.
La mission primaire a une durée de deux années martiennes à compter de l'atterrissage (687 jours terrestres. 1 jour martien (1 sol) = 24 heures 39 minutes terrestres) qui sera sans aucun doute prolongée car sa durée ne permet pas d'atteindre tous les objectifs. Le déroulement prévu des opérations comprend trois phases :
La première phase après l'atterrissage, qui a eu lieu le 18 février 2021, consiste à réaliser le déploiement des équipements de l'astromobile qui étaient en position repliée pour les protéger, ou pour des raisons d'encombrement, puis à vérifier ces équipements ainsi que les instruments scientifiques. Cette phase doit durer 60 jours martiens (sols).
Durant les 30 premiers jours tous les systèmes de l'astromobile et ses instruments seront vérifiés et leur fonctionnement sera testé. Les opérations suivantes sont prévues. :
Les 30 jours suivants sont réservés à des opérations qui dépendront des résultats obtenus jusque là. Parmi les activités prévues durant cette période figurent :
L'hélicoptère martien embarqué Ingenuity est fixé sous l'astromobile. Une fois ce dernier à la surface de Mars, l'hélicoptère est déployé puis déposé sur le sol. Après une phase de vérification d'une dizaine de jours, trente jours sont consacrés à tester ses capacités. À cet effet l'astromobile se place à une distance de sécurité (50 à 100 mètres) puis l'hélicoptère s'élève à la verticale jusqu'à une hauteur de 3 mètres avant d'exécuter un vol stationnaire durant 30 secondes. Quatre autres vols de quelques centaines de mètres sont prévus. Leur durée peut aller jusqu'à 90 secondes. Une fois la phase d'expérimentation achevée, l'hélicoptère est abandonné sur place.
La mission primaire débute une fois la période de mise en service achevée. Durant cette période, l'astromobile doit parvenir à prélever 20 carottes de sol. Il est prévu qu'il parcoure une quinzaine de kilomètres. Pour remplir ses objectifs l'astromobile se déplace afin de trouver des roches formées dans un milieu aqueux ou modifiées par l'action de l'eau et d'en prélever des échantillons. Les roches susceptibles d'avoir préservé des traces chimiques de la vie durant plusieurs milliards d'années sont particulièrement visées. D'autres échantillons sont prélevés sur des roches volcaniques ou d'une nature permettant d'identifier les changements intervenus sur l'environnement du site au cours du temps. Lorsqu'une roche a été sélectionnée, une carotte de celle-ci de 5 centimètres de profondeur est prélevée, broyée et un échantillon de 15 grammes est stocké dans un tube qui est scellé de manière hermétique. Le tube est stocké à bord de l'astromobile. L'équipe projet sur Terre définit le ou les sites dans lesquels les 43 tubes d'échantillons doivent être déposés. Les coordonnées des différents dépôts sont relevés par les orbiteurs martiens avec une précision d'environ 1 mètre.
L'astromobile n'est que partiellement autonome et le déroulement des opérations doit être établi quotidiennement par les équipes de techniciens et de scientifiques sur Terre. Les échanges entre l'astromobile et la Terre doivent prendre en compte des contraintes importantes : la communication directe nécessite que la surface de Mars soit tournée vers la Terre, la communication via les orbiteurs suppose que le site d'atterrissage soit survolé par celui-ci. Enfin les périodes de jour sur Terre durant laquelle le support (techniciens et scientifiques) est actif ne coïncident pas avec les journées martiennes. Le déroulement des échanges est généralement le suivant :
Pour préparer les opérations du jour, l'équipe au sol doit commencer par analyser les données transmises la veille en fin de journée par l'astromobile. Grâce à celles-ci elle s'assure que l'astromobile fonctionne normalement, étudie l'avancement et les résultats obtenus et programme les instructions du jour suivant en tenant compte des objectifs scientifiques fixés et des contraintes qui sont formulées par les ingénieurs. Les nouvelles instructions sont codées puis transmises directement à l'astromobile. Au début des opérations sur Mars l'équipe au sol vit à l'heure martienne pour optimiser l'enchainement des opérations : les données sont analysées et les nouvelles instructions sont transmises durant la nuit martienne. Ce mode de fonctionnement impose un décalage de 40 minutes des heures de veille du fait de la longueur du jour martien. Ce rythme épuisant n'est maintenu que durant les 90 premiers jours.
Mars est la planète du système solaire qui présente les caractéristiques les plus proches de celles de la Terre. Elle est pour cette raison la destination favorite des missions d'exploration du système solaire depuis le début de l'ère spatiale. Les sondes spatiales lancées vers cette destination ont cherché à déterminer les principales caractéristiques physiques de la planète et à reconstituer son histoire. Menées principalement par l'agence spatiale américaine, la NASA, ces missions ont pu démontrer au cours des vingt dernières années la présence d'eau à la surface de Mars ainsi que, dans le passé, celle d'eau à l'état liquide. L'existence de molécules organiques, briques nécessaires à la formation de la vie, a été plus récemment prouvée à l'aide du mini-laboratoire de l'astromobile Curiosity de la mission MSL. Mars 2020 constitue la première des trois missions qui se sont données pour but de ramener sur Terre des échantillons du sol martien. Il s'agit, grâce aux instruments puissants disponibles dans les laboratoires terrestres, de reconstituer de manière plus précise l'histoire de la planète et d'identifier d'éventuelles traces de vie passée par une analyse poussée à l'échelle moléculaire et atomique.
L'exploration de la planète Mars tient une place particulièrement importante dans les programmes scientifiques d'exploration spatiale du système solaire. Mars constitue d'abord une destination proche ce qui permet d'y envoyer relativement facilement des engins spatiaux. Par ailleurs, contrairement aux autres planètes du Système solaire et bien qu'elle soit aujourd'hui probablement stérile, Mars a sans aucun doute connu par le passé des conditions assez proches de celles régnant sur Terre qui ont pu, mais cela reste à confirmer, permettre l'apparition de la vie.
Sur le plan scientifique l'exploration de Mars répond à trois objectifs :
Les réponses à ces trois questions sont susceptibles de nous aider à comprendre notre propre planète.
Pour des raisons à la fois de faisabilité technique et de coût, aucun projet d'exploration par un équipage d'astronautes n'a jusque dans les années 2010 été mis en œuvre. Aussi, depuis le début de l'ère spatiale, l'exploration de Mars est confiée à des missions robotiques et le restera sans doute pour les vingt années qui suivent. Ces missions ont permis progressivement de mieux connaître cette planète sans pour autant apporter des réponses définitives aux principales interrogations scientifiques. Les engins spatiaux qui ont fait le plus progresser notre connaissance sont des orbiteurs (sondes spatiales placées en orbite autour de Mars) capables, grâce à des instruments d'une sophistication croissante, de collecter des données sur la surface de l'ensemble de la planète, son atmosphère ainsi que dans une certaine mesure son sous-sol.
Des sondes spatiales ont été lancées vers Mars pratiquement dès le début de l'ère spatiale. La première à atteindre cette planète avec une instrumentation opérationnelle, Mariner 4 (1965), réduit à néant les spéculations sur la présence d'une vie analogue à celle de la Terre en confirmant l'absence d'une atmosphère dense et donc d'eau liquide à la surface ainsi que l'absence de champ magnétique pouvant protéger les organismes vivants complexes des rayonnements solaires (ultraviolet) et galactiques (rayons cosmiques). Les sondes spatiales Viking qui se posent à la surface de la planète en 1975 procèdent à des analyses d'échantillons du sol sans pouvoir découvrir d'indices d'une vie présente ou passée. Les instruments démontrent la nature très oxydante du sol martien qui ne permet pas à des bactéries de se développer. Ces résultats décevants entrainent une pause de 20 ans dans le programme d'exploration mené quasi exclusivement par l'agence spatiale américaine, la NASA.
La sonde spatiale Mars Global Surveyor de la NASA (1996) relance l'intérêt pour Mars en découvrant depuis son orbite des dépôts sédimentaires qui démontrent que Mars a connu une période chaude durant laquelle l'eau était liquide à sa surface. Les années 2000 sont des années très fructueuses. Les instruments de l'orbiteur européen Mars Express (2003) permettent de confirmer la présence de grandes quantités d'eau stockée sous forme de glace au niveau des calottes polaires, détectent la présence de traces de méthane d'apparition récente dans l'atmosphère de la planète dont l'origine pourrait être soit biologique soit volcanique, et enfin découvre des sédiments argileux qui n'ont pu apparaître qu'en présence d'eau restée liquide et faiblement acide sur de longues périodes donc propice à la vie. Mars Reconnaissance Orbiter (2006), doté de caméras particulièrement puissantes, affine toutes ces découvertes en effectuant un inventaire systématique des terrains reflétant la présence d'eau : plus de 100 000 dépôts sédimentaires (argiles, de carbonates) sont détectés toutefois ceux-ci ne représentent que 1% de la surface de Mars. L'orbiteur détecte également la présence d'eau à des latitudes relativement basses confirmant que l'atmosphère martienne conserve les traces d'un changement récent d'inclinaison de l'axe de la planète.
Les atterrisseurs (fixes) et les rovers mobiles, capables de circuler sur le sol, jouent un rôle de plus en plus important dans l'exploration de Mars à compter du début des années 2000 : leur principal rôle est de valider sur le terrain les déductions tirées des observations des orbiteurs. Les rovers MER (2003) de 174 kg sont les premiers à effectuer un travail de géologue avec toutefois une palette d'instruments limitée par les contraintes de poids. L'atterrisseur statique Phoenix (2008) aux ambitions relativement modestes se pose dans la région du pôle Nord martien. Il confirme la présence de glace d'eau à la surface de la planète mais découvre que le sol contient une proportion importante de perchlorates peu propice à la vie.
L'objectif principal de la NASA - la détection de la présence d'eau et de son action passée ou présente à la surface - étant désormais pratiquement atteint, la stratégie d'exploration se tourne vers la recherche de molécules prébiotiques indispensables à l'apparition de la vie ou de molécules produites par des formes de vie identifiables par leur signature isotopique. Cet objectif est confié à l'astromobile lourd Curiosity (environ 1 tonne) de la mission Mars Science Laboratory (MSL). Celui-ci est équipé de mini-laboratoires capables d'analyser à l'échelle atomique et moléculaire des échantillons de sol. Il se pose en 2012 dans le cratère Gale à proximité d'un dépôt argileux prometteur qu'il atteint en 2019. Les premiers résultats indiquent que le sol de Mars contient des molécules organiques complexes, un indice important, toutefois en très faibles quantités. Aucune biosignature, indice direct de présence de vie présente ou passée, n'est toutefois détectée mais ce résultat pourrait s'expliquer par l'action des rayons cosmiques qui dans la durée ont cassé les molécules complexes présentes dans les couches superficielles du sol. D'autres résultats, nécessitant des travaux complexes sur Terre, sont toujours attendus courant 2020.
La communauté scientifique internationale considère depuis plusieurs décennies que seule une analyse d'échantillons de sol martien ramenés sur Terre peut permettre de trancher la question de la présence de la vie passée ou présente sur Mars :
Envisagée dès les années 1980, une mission ramenant des échantillons de sol martien a fait l'objet de dizaines d'études qui n'ont toutefois jamais abouti. Son coût (jusqu'à 10 milliards de dollars américains) la range dans la même catégorie que les missions spatiales les plus complexes menées jusque-là dans le système solaire et le risque est particulièrement important : enchainement complexe d'opérations, premières technologiques (aller-retour Terre-Mars, atterrissage de très grande précision, décollage depuis le sol martien). Mais en 2013 la mission Mars Science Laboratory a levé une importante barrière en validant une technique d'atterrissage de précision ce qui permet d'envisager le passage à la phase suivante de l'exploration de Mars. Selon le scénario mis au point par la NASA pour ramener les échantillons sur Terre trois missions distinctes doivent être enchainées : la première identifie les sites propices puis collecte et stocke les carottes du sol martien, la deuxième ramène les échantillons en orbite martienne et la dernière ramène ceux-ci sur Terre. Mars 2020 est chargée de réaliser la première étape de cette mission.
Les données collectées par les différentes missions spatiales ont permis de reconstituer une grande partie l'histoire de Mars mais de nombreuses questions restent en suspens :
Le Rapport décennal sur les sciences planétaires rédigé en 2011 par des représentants de la communauté scientifique et publié par le Conseil national de la recherche des États-Unis définit les objectifs scientifiques prioritaires de l'exploration spatiale pour la décennie à venir. Le rapport place au premier rang le retour d'un échantillon de sol martien sur Terre. Il recommande que l'agence spatiale américaine, la NASA, lance avant 2022 la mission réalisant la première étape de ce programme, c'est-à-dire la mission de collecte des échantillons, dans la mesure où son coût peut être maintenu sous la barre des 2,5 milliards de dollars. À l'époque la NASA a entamé une collaboration avec l'Agence spatiale européenne pour ramener des échantillons sur Terre. La première mission de ce projet, à la charge de la NASA, est baptisée Mars Astrobiology Explorer-Cacher (MAX-C). L'architecture de cette mission repose sur celle de Mars Science Laboratory qui est sur le point d'être lancée par la NASA.
En 2011 la NASA, pour des raisons budgétaires, décide d'annuler le projet MAX-C. La mission de retour d'échantillons martiens est repoussée à une date indéterminée.
Mais à la suite de l'atterrissage réussi de l'astromobile Curiosity (mission Mars Science Laboratory) en , le président des États-Unis Obama décide d'inclure dans le budget de la NASA la réalisation d'un nouveau rover martien. Contrairement à la démarche habituelle cette décision est prise sans qu'aucun objectif scientifique n'ait été fixé à la future mission. Ce projet est rendu public par la NASA le , au cours d'un congrès de l'Union américaine de géophysique à San Francisco : l'astromobile, qui reprend l'architecture du MSL/Curiosity y compris le système de rentrée atmosphérique et d'atterrissage, doit être lancé vers Mars en 2020. La charge utile de l'astromobile doit être différente de celle de Curiosity. Grâce à la réutilisation des composants du MSL, l'agence spatiale table sur un coût de 1,5 milliard de dollars contre 1,5 milliard pour MSL.
En , à la demande de la NASA, un comité issu de la communauté scientifique (la Science Definition Team ou SDT) est constitué pour définir les objectifs de la future mission. Le rapport de plus de 150 pages rendu début fixe comme principal objectif la collecte d'échantillons martiens et leur stockage à la surface de la planète en attendant une mission chargée de les ramener sur Terre. Il lance donc le projet de retour d'échantillons de sol martien sur Terre régulièrement différé sans toutefois que soit planifié et financé ce retour. Les autres recommandations du document sont les suivantes :
Ce rapport préconise également de modifier le système de télécommunications utilisé par l'astromobile Curiosity pour que celui-ci puisse transmettre directement ses données vers la Terre au cas où le relais assuré actuellement en UHF par les orbiteurs martiens ne serait plus opérationnel dans les années 2020. La modification baptisée DTE (Direct-to-Earth) consiste à remplacer l'antenne grand gain par une antenne de plus grande taille et à remplacer l'amplificateur actuel par un tube à ondes progressives plus puissant. Mais cette option n'est pas retenue. Pour les instruments le rapport propose deux configurations de la charge utile de masse totale équivalente et pouvant remplir les objectifs fixés à la mission. Les trois instruments les plus complexes de MSL - SAM, ChemCam et CheMin - n'en font pas partie. Ils sont en partie remplacés par de nouveaux instruments plus performants (comme la SuperCam à la place de la ChemCam) :
Le rapport rédigé par la Science Definition Team assigne cinq objectifs à la mission de Mars 2020 :
La sélection des instruments embarqués est figée par la NASA en . Le lanceur Atlas V 541 qui a placé en orbite la sonde spatiale Mars Science Laboratory est également retenu pour le lancement de Mars 2020.
En , les responsables de la NASA, après une phase d'évaluation, décident que Mars 2020 embarquera à titre expérimental le petit hélicoptère Mars Helicopter Scout (MHS) de 1,8 kg chargé de tester le recours à des vols de reconnaissance optique. Cette expérimentation doit durer une trentaine de jours. Le responsable scientifique de la mission s'oppose en vain à cette décision car il estime que ces tests empièteront sur le déroulement très tendu des opérations au sol. Le coût de cette expérimentation, évalué à 55 millions de dollars n'est pas pris en charge par le projet Mars 2020.
La conception générale de la sonde spatiale est figée et validée en (phase B). Les spécifications détaillées et la construction de Mars 2020 (phase C) peuvent débuter. Le parachute qui doit freiner la sonde spatiale durant sa descente vers le sol de Mars est testé à l'aide d'un tir effectué par une fusée-sonde Black Brant effectué en octobre 2017. L'assemblage de l'étage de descente débute en mars 2018 dans les locaux du Jet Propulsion Laboratory à Pasadena (Californie). Durant des tests effectués durant le premier trimestre 2017 sur la structure du bouclier thermique d'un modèle de test, une fracture est détectée. Toutefois cet incident ne remet pas en cause la conception du bouclier (inchangée par rapport à Mars Science Laboratory) et ne modifie pas la date de lancement. Le troisième test effectué avec une fusée-sonde Black Brant en octobre 2018 permet de valider une version renforcée du parachute de Mars Science Laboratory qui sera utilisée pour Mars 2020. Le parachute a résisté à une traction de 37 tonnes (soit 85% de plus que ce qui est prévu) à vitesse supersonique.
Les premiers tests électriques et informatiques des différents composants de la sonde spatiale débutent en mars 2019 dans la salle blanche numéro 1 du centre JPL. Les tests de l'hélicoptère NHS dans une chambre à vide de 7,62 mètres de diamètre reproduisant l'environnement de Mars — composition et pression de l'atmosphère et température descendant jusqu'à -90°C — s'achèvent avec succès au même moment. Le système de déploiement sur le sol de Mars de l'hélicoptère est testé chez Lockheed Martin. Un premier assemblage de l'ensemble des éléments de la sonde spatiale est effectué en avril pour identifier d'éventuelles erreurs de dimensionnement. L'ensemble est ensuite utilisé en mai pour effectuer des tests dans une chambre à vide et réaliser des tests acoustiques simulant la phase de lancement . En juin, le mât sur lequel sont fixés la caméra Mastcam-Z et les capteurs de SuperCam et de la station météorologique sont assemblés avec l'astromobile, puis c'est le tour des roues et du bras. La partie interne de l'instrument SuperCam est installée dans le corps de l'astromobile début juillet. Le fonctionnement du bras est testé le même mois. En août le dernier composant important de l'astromobile, le système de carrousel qui fournit les forets, est à son tour mis en place.
L'astromobile est placé sur une table tournante pour déterminer son centre de gravité. À l'issue de ces mesures neuf masses d'une masse totale de 20 kilogrammes sont fixées à différents points du rover pour équilibrer parfaitement celui-ci. La procédure de séparation de l'étage de descente et de l'astromobile est testée en octobre. Il s'agit essentiellement de s'assurer que les dispositifs pyrotechniques fonctionnent sans générer de dégâts. En octobre le rover est déplacé de la salle d'assemblage vers celle destinée à tester son fonctionnement. En application d'une procédure standard, une étude sur les risques liés à la présence de plutonium embarqué est rendue publique. Selon celle-ci, dans le scénario le plus pessimiste (dispersion du plutonium en dehors de son blindage à la suite d'une destruction du lanceur immédiatement après son lancement dont la probabilité est évaluée à 1 sur 960), la dose maximale de radioactivité subie par une personne présente sur le pas de tir est considérée comme faible et équivalente à 8 mois de radioactivité naturelle.
En décembre 2019 l'astromobile effectue ses premiers tours de roue. Le véhicule de rentrée développé par Lockheed Martin est de son côté transféré le même mois à la base de lancement de Cap Canaveral en Floride. Mi-février 2020, l'astromobile est à son tour convoyé depuis les locaux du Jet Propulsion Laboratory en Californie, où il a été assemblé, vers Cap Canaveral pour y être testé, assemblé avec l'étage de croisière et le véhicule de rentrée et préparé avant son lancement.
Le coût de la mission Mars 2020 est évalué initialement en 2012 entre 1,3 et 1,7 milliard de dollars. Une fois la phase de conception achevée, il est figé à 2,44 milliards de dollars et reste stable sur la période 2014-2016. Ce coût inclut 576 millions de dollars pour les opérations de lancement et l'acquisition du lanceur Atlas V ainsi que 456 millions de dollars pour la conduite des opérations durant la mission primaire de deux ans. Ce dernier chiffre incorpore des réserves permettant de faire face à des dépassements en phase de développement. Plusieurs difficultés rencontrées durant la phase de développement, en particulier dans la mise au point des instruments PIXL, SHERLOC et du système de gestion des échantillons, entraine une augmentation du coût de la mission de 359,3 millions. Cet accroissement est partiellement compensé par une réduction des coûts de gestion en phase opérationnelle évaluée à 84 millions de dollars. Le coût total du projet est évalué en avril 2020 à 2 725,8 millions. Le développement du petit hélicoptère Mars Helicopter Scout (MHS - Ingenuity) a de son côté coûté 80 millions de dollars auxquels il faut ajouter 5 millions de dépenses pour sa mise en œuvre sur Mars.
Le site d'atterrissage de Mars 2020 est, comme dans le cas de Curiosity, sélectionné par consultation de la communauté internationale des spécialistes de Mars. Le site retenu doit avoir par le passé, vu circuler de l'eau et, par ailleurs, répondre aux critères suivants :
Initialement 28 sites d'atterrissage sur Mars sont proposés et classés en . Dix sites sont sélectionnés au cours d'une deuxième séance de travail qui a lieu en . Dans l'ordre de leur classement (en commençant par le mieux noté), ce sont : le cratère Jezero (18,50 N, 77.40 E), les Columbia Hills (cratère Goussev, 14,40 S, 175,60 E), Syrtis Major Planum (17,80 N, 77,10 E), le cratère Eberswalde (23,00 S, 327,00 E), le bassin Melas (12,20 S, 290,00 E), Nili Fossae (21,00 N, 74,50 E), Nili Fossae Carbonate (21,90 N, 74,50 E), Mawrth Vallis (24,00 N, 341,10 E), le cratère Holden (26,40 S, 325,10 E) et le cratère McLaughlin (21,90 N, 337,80 E).
En une deuxième séance de travail réduit le nombre de site à trois : cratère Jezero, Syrtis Major Planum et Columbia Hills. Les deux premiers ont des appréciations largement au-dessus du troisième. Le cratère Jezero est finalement sélectionné en .
Mars 2020 doit explorer le cratère Jezero, autrefois emplacement d'un lac permanent et qui conserve les traces de plusieurs deltas de rivière. Le site est sélectionné par la communauté scientifique parmi soixante candidats. Le cratère (18.4°N, 77.7°E) est situé dans la région de Nili Fossae. Il se trouve, comme le cratère Gale exploré par l'astromobile Curiosity, à la limite qui sépare la plaine qui recouvre l'hémisphère nord de la planète et les plateaux élevés et souvent accidentés recouvrant l'hémisphère sud. Le cratère Jezero se situe sur la bordure nord-ouest du bassin Isidis Planitia dernier épisode sur Mars du grand bombardement et qui remonte à plus de 3,9 milliards d'années. Le choc de l'impact est à l'origine du réseau de failles Nili Fossae situé à l'ouest du cratère Jezero. Ce dernier est formé par un impact postérieur. Par la suite deux réseaux de rivières alimentées par des précipitations neigeuses drainent la région en déversant leurs eaux dans le cratère Jezero. Un lac d'une profondeur d'au moins 250 mètres est alors formé dans le cratère. Une brèche dans la bordure nord-est du cratère a permis aux eaux de s'écouler vers l'extérieur. Le cône de déjection est visible sur google map.
Selon les observations effectuées par les instruments de l'orbiteur Mars Reconnaissance Orbiter, les terrains situés dans ce cratère de 45 kilomètres de diamètre comportent cinq différents types de roches dont des argiles et des carbonates. Le site, très prometteur du fait de cette diversité géologique, constitue un terrain d'atterrissage difficile car on y trouve à l'est de nombreux rochers, des falaises à l'ouest et des dépressions remplies de dunes de sable à différents emplacements. Mais les améliorations apportées par la NASA dans les techniques de guidage durant la descente de l'astromobile vers le sol, se traduisent par une réduction de la taille de l'ellipse d'atterrissage de 50 % par rapport à la mission de Curiosity en 2012 et permettent désormais d'accéder à ce type de site.
La sonde spatiale Mars 2020 reprend l'architecture de l'engin de la mission Mars Science Laboratory. Comme celui-ci et comme les sondes spatiales ayant atterri sur Mars qui l'ont précédé, il se compose de quatre éléments principaux (cf schéma 1) :
Les caractéristiques de Mars 2020, hormis les instruments scientifiques et le système de prélèvement et de stockage des échantillons de sol martien diffèrent très peu de celles de Mars Science Laboratory. Elles sont principalement destinées à améliorer la précision de l'atterrissage et diminuer les risques liés à cette phase :
Le recours à des panneaux solaires au lieu du générateur thermoélectrique à radioisotope multi-mission (MMRTG) utilisé par le MSL a été envisagé mais écarté.
L'étage de croisière est similaire à celui de MSL. C'est une structure cylindrique en aluminium de 4 mètres de diamètre et de faible hauteur d'une masse de 539 kg qui coiffe le reste de la sonde et supporte sur la partie opposée à celle-ci l'adaptateur permettant de solidariser MSL et son lanceur. Son rôle est de prendre en charge le transit de la sonde spatiale entre l'orbite terrestre et la banlieue de Mars. À l'approche de Mars, l'étage de croisière, qui achève sa mission et constitue désormais une masse pénalisante, est largué avant que le véhicule de rentrée n'entame la rentrée atmosphérique. L'étage de croisière effectue à l'aide de son système de propulsion les 5 à 6 corrections de trajectoire nécessaires pour que la sonde se présente à proximité de la planète Mars avec la vitesse et la position lui permettant d'effectuer un atterrissage de précision ; durant le transit de 8-9 mois entre la Terre et Mars, il assure la surveillance et la maintenance des équipements de l'ensemble de la sonde.
La traversée de l'atmosphère martienne à une vitesse initiale atteignant 6 km par seconde provoque un échauffement important des parties externes de la sonde qui atteignent une température de 2 100 °C. Pour protéger l'astromobile durant cette phase, il est encapsulé dans un véhicule de rentrée. Celui-ci est composé d'un bouclier thermique avant, conçu pour résister à la forte chaleur que subit cette partie de la sonde, et d'un bouclier arrière, qui notamment contient le parachute. Le véhicule de rentrée a la forme d'une sphère-cône de demi-angle de 70° héritage du programme Viking repris sur tous les engins de la NASA envoyés à la surface de Mars par la suite. Par contre, la sonde innove avec des moteurs-fusées qui permettent de contrôler de manière active et non plus passive l'orientation du véhicule de rentrée jusqu'au déploiement du parachute afin de corriger les écarts par rapport à la trajectoire nominale et de permettre un atterrissage de précision. Le bouclier encapsule l'étage de descente et l'astromobile et est solidaire de l'étage de croisière durant le transit Terre-Mars.
L'étage de descente (le skycrane) est responsable de la dernière phase de la descente et dépose en douceur l'astromobile sur le sol martien. Une fois cette mission achevée, il reprend de la hauteur et va s'écraser à quelques centaines de mètres de l'astromobile. Pour réaliser sa mission, l'étage de descente comprend :
L'étage de croisière de Mars 2020 est similaire à celui de Mars Science Laboratory (représenté ici).
Vue du dessous de l'étage de descente sans le bouclier thermique avant.
Mars 2020 complètement assemblé est préparé pour des tests acoustiques.
L'astromobile Perseverance est basé sur Curiosity mais comporte plusieurs différences qui portent sur les instruments embarqués, le bras (plus massif), la présence d'un espace de stockage des échantillons martiens, et les roues modifiées pour tenir compte des problèmes rencontrés par Curiosity. Ces modifications se traduisent par une masse sensiblement plus importante (1 025 kilogrammes contre 899 kg) et un châssis allongé de 3 centimètres. L'astromobile est long de 3 mètres (en ne prenant pas en compte le bras), large de 2,7 mètres et haut de 2,2 mètres.
Le rover doit parcourir un terrain accidenté parsemé de rochers, présentant parfois des pentes fortes et un sol dont la consistance, parfois sableuse, peut conduire à l'enlisement du véhicule et entraîner sa perte comme ce fut le cas pour Spirit. Le rover de Mars 2020, comme son prédécesseur Curiosity, peut s'aventurer sur des pentes à 45° sans se retourner (mais il est prévu d'éviter les pentes de plus de 30°). Il peut escalader des rochers ou franchir des trous d'une hauteur supérieure au diamètre de ses roues (52,5 cm). Pour y parvenir il utilise une suspension, baptisée rocker-bogie, mise au point par la NASA pour les rovers MER : celle-ci limite l'inclinaison de la caisse du rover lorsque celui-ci franchit un obstacle qui ne soulève qu'un seul des deux côtés. Ces suspensions sont constituées par des tubes en titane. Chacune des 6 roues de 52,5 cm de diamètre est constituée d'un cylindre creux en aluminium comportant sur sa surface externe 48 cannelures pratiquement droites (contre 24 pour Curiosity) pour une meilleure prise dans un sol mou ou sur des rochers présentant une face abrupte. Pour éviter les problèmes rencontrés par l'astromobile Curiosity (perforation des roues), la bande de roulement est deux fois plus épaisse. Les roues sont équipées chacune d’un moteur individuel. Chacune des 4 roues d'extrémité comporte un moteur agissant sur la direction ce qui permet au rover de pivoter sur place. Un tour de roue fait avancer le rover de 1,65 mètre. La vitesse maximale sur un terrain plat est de 4,2 centimètres par seconde soit 152 mètres par heure. À cette vitesse, les moteurs assurant la propulsion consomment 200 watts.
Le rover a besoin d'énergie pour faire fonctionner ses équipements ainsi que ses instruments, pour communiquer avec la Terre et pour que ses organes sensibles soient maintenus dans une plage de température acceptable. Cette énergie est fournie par un générateur thermoélectrique à radioisotope (ou GTR), le MMRTG développé par le DoE et produit par Boeing. Celui-ci utilise 4,8 kg de dioxyde de plutonium PuO2 enrichi en plutonium 238 générant une puissance initiale d'environ 2 000 W thermiques convertis nominalement en 120 W électriques par des thermocouples à base de matériaux thermoélectriques, à savoir PbTe/TAGS. Le rover dispose de 2,7 kWh/j. Cette puissance est indépendante de l'intensité du rayonnement reçu du Soleil et n'imposera donc pas d'arrêter la mission pendant l'hiver martien. Mars 2020 dispose d'une autonomie nominale d'une année martienne, soit près de deux années terrestres, mais sa source d'énergie devrait encore fournir 100 W électriques après 14 années terrestres de fonctionnement. L'électricité est stockée dans deux batteries rechargeables au lithium ion ayant chacune une capacité de 42 Ah. Un système de radiateurs comportant près de cinquante mètres de tubes dans lesquels circule un fluide caloporteur permet de rejeter la chaleur excédentaire. Le MMRTG est installé à l'extrémité arrière du rover d'où il émerge pour permettre au système de refroidissement d'être en contact avec l'atmosphère martienne. Il a un diamètre de 64 centimètres pour une longueur de 66 centimètres et sa masse est de 45 kilogrammes.
Le radiateur sur lequel doit être fixé le MMRTG est visible sur cette amorce de l'arrière du rover.
Le MMRTG du rover de Mars 2020.
Pour transmettre les données scientifiques recueillies, les données de navigation et les données télémétriques sur son fonctionnement ainsi que pour recevoir les instructions mises au point par l'équipe sur Terre, le rover dispose de trois antennes qui fournissent une grande flexibilité opérationnelle tout en permettant de faire face à une panne d'un des systèmes. Ces antennes, qui sont fixées sur l'arrière du pont supérieur du rover, sont :
Le rover dispose de deux ordinateurs identiques et redondants, baptisés RCE (Rover Compute Element), qui pilotent son fonctionnement. Un seul des deux ordinateurs est en activité à un moment donné. L'autre ordinateur est activé en cas de problème sur l'ordinateur actif. Chaque ordinateur est relié aux différents équipements par un réseau conforme aux standards de l'industrie aérospatiale c'est-à-dire répondant aux besoins de fiabilité des avions et des engins spatiaux. Les deux ordinateurs sont « radiodurcis » pour résister aux rayons cosmiques. Ils utilisent tous deux un microprocesseur RAD750 cadencé à 200 MHz. Chaque ordinateur comporte 256 kilooctets d’EEPROM, 256 mégaoctets de mémoire DRAM et 2 gigaoctets de mémoire flash. L'ordinateur assure plusieurs fonctions grâce à différents capteurs :
L'astromobile Mars 2020 dispose d'un bras (Robot Arm RA) fixé à l'avant du châssis et portant à son extrémité un ensemble d'outils utilisés pour analyser in situ des échantillons de sol et de roche : SHERLOC combine une caméra (WATSON), un laser et un spectromètre ultraviolet pour déterminer les composants minéraux et organiques tandis que PIXL, qui combine une caméra et un spectromètre de fluorescence X détermine les éléments chimiques présents. Le bras porte également un ensemble d'outils permettant de recueillir des carottes du sol : GDRT (Gaseous Dust Removal Tool) pour nettoyer la surface, un capteur de contact et une foreuse. Le bras est fixé sur la face avant du rover et est long de 2,1 mètres. Les outils situés au bout du bras peuvent être positionnés face à la zone à analyser, sans que le rover se déplace, grâce à plusieurs articulations motorisées qui fournissent 5 degrés de liberté.
Comme le bras de Curiosity, celui de Perseverance est conçu pour fonctionner malgré une amplitude thermique qui atteint 100°C et qui affecte notamment la géométrie du bras et les mesures effectuées par les capteurs de force. Le système de forage et de récupération des carottes de sol est beaucoup plus sophistiqué que la foreuse de Curiosity et le bras doit supporter une masse d'équipements et d'instruments augmentée de 50% (40 kilogrammes) sans pour autant augmenter son propre poids. Alors que pour Curiosity les capteurs de force sont uniquement utilisés pour éviter de dépasser la résistance des équipements, ceux de Perseverance permettent de moduler la pression exercée par la foreuse et sont également utilisés pour effectuer les changements de foret.
Le système de collecte et de stockage des échantillons martiens représente plus de la moitié de la masse de la charge utile de l'astromobile. C'est un ensemble mécanique extrêmement complexe composé de trois robots. Sa conception a nécessité une longue mise au point pour garantir sa fiabilité et limiter la contamination des échantillons prélevés. Son rôle est de prélever par forage jusqu'à 43 carottes du sol (roche ou régolithe) du diamètre d'un crayon (13 millimètres) et de la moitié de sa longueur (60 millimètres). Celles-ci sont stockées dans des tubes qui sont scellés après remplissage et rangés dans un emplacement situé sous la partie avant du rover. Les tubes seront par la suite déposés dans un endroit identifié avec précision pour pouvoir être collectés par une mission de retour d'échantillons martiens qui reste à financer (début 2020). Pour collecter les échantillons, le sol est d'abord analysé à l'aide des instruments SHERLOC (spectromètre et caméra), WATSON (caméra à fort grossissement) et PIXL (spectromètre à rayons X fixés au bout du bras articulé. Un petit réservoir contenant de l'azote permet de produire un jet de gaz afin de chasser la poussière et les particules avant de procéder à une analyse à l'aide des instruments SHERLOC et PIXL. La foreuse va chercher un foret adapté au type de sol sur un carrousel mobile. Cet équipement est logé dans la partie avant de l'astromobile et fait partie d'un ensemble complexe baptisé Adaptive Caching Assembly (ACA). Le foret est creux et un bras long de 0,5 mètre (le Sample Handling Assembly ou SHA) disposant de 3 degrés de liberté place dans celui-ci un tube qui sera rempli par la carotte de sol au moment du forage. La foreuse peut fonctionner selon deux modes : rotation ou rotation/percussion. Le forage permet d'obtenir un échantillon de sol de 6 centimètres de long et 1,3 centimètre de diamètre dont la masse est d'environ 10 à 15 grammes. Le foret est alors replacé sur le système de carrousel. Le bras SHA intervient alors pour effectuer les opérations de stockage définitif. Il extrait du foret creux le tube contenant l'échantillon de sol et le déplace vers un équipement responsable des opérations finales. Celui-ci mesure le volume de l'échantillon, prend une image de celui-ci, installe un bouchon destiné à limiter les mouvements de l'échantillon dans le tube puis scelle le tube et le range dans le système de stockage définitif. À la fin de la mission, c'est ce bras qui aura la responsabilité de déposer les tubes sur le sol pour constituer le dépôt récupéré ultérieurement par la mission ramenant ceux-ci sur Terre. Le système comprend également six tubes témoins qui contiennent des échantillons de sol terrestre stérilisés comme les tubes vides et qui sont exposés à l'atmosphère de Mars avant d'être scellés .
Comme tous les engins envoyés vers le sol de Mars, la sonde spatiale Mars 2020 est débarrassée avant son lancement des micro-organismes qui pourraient venir contaminer la planète et ainsi compromettre l'étude scientifique de celle-ci. Cet objectif de protection planétaire est rempli par différentes mesures : assemblage de l'engin spatial en salle blanche qui limite la quantité de particules en suspension dans l'atmosphère, nettoyage régulier des surfaces et des sols avec des produits bactéricides, stérilisation thermique de certains composants qui sont portés jusqu'à des températures de 200°C, port de combinaisons protectrices par les personnes responsables de l'assemblage de la sonde spatiale, etc. L'objectif fixé est que l'ensemble des composants atteignant le sol de Mars ne contienne pas plus de 300 000 spores de bactéries et que l'astromobile proprement dit ne comporte pas plus de 41 000 spores. D'autre part la trajectoire initiale de la sonde spatiale ne vise pas Mars de manière que le deuxième étage du lanceur qui suit une trajectoire parallèle ne vienne pas s'écraser sur le sol martien. Par ailleurs le site d'atterrissage choisi ne doit pas comporter de réservoirs de glace d'eau à une profondeur inférieure à 5 mètres pour éviter la propagation des bactéries transportées.
Une contrainte supplémentaire résulte du fait que les échantillons de sol martien doivent être ramenés sur Terre pour une analyse scientifique approfondie et la recherche de traces de vie passées. Les composants impliqués dans la collecte des échantillons et leur stockage subissent une stérilisation plus poussée. Les mécanismes impliqués directement dans le stockage sont isolés de l'extérieur par un couvercle qui se détache uniquement lorsque l'astromobile est arrivé sur Mars. Des tubes témoins permettent de mesurer l'environnement de cet équipement y compris les traces de contamination antérieure au lancement. L'état de stérilisation des différents composants impliqués est documenté de manière détaillée.
L'instrumentation scientifique est en partie différente de celle de Mars Science Laboratory. Les instruments embarqués doivent permettre des mesures plus précises dans plusieurs domaines :
La communauté scientifique et la NASA ont fait le pari qu'une mission de retour d'échantillons martiens sera finalement programmée et budgétée : ils ont choisi de retenir, non pas des instruments capables de faire les analyses les plus poussées, mais ceux capables d'identifier de la manière la plus efficace les portions de sol les plus intéressantes pour une analyse ultérieure sur Terre. Alors que Curiosity emportait deux laboratoires (SAM et CheMin) permettant une analyse sur place, l'astromobile de Mars 2020 n'en emporte aucun : le mini-laboratoire CODEX, bien que très prometteur, n'a pas été retenu. La moitié de la charge utile est réservée au système de prélèvement et de stockage des échantillons. Le reste de la charge utile comprend six instruments scientifiques et deux expériences technologiques. Certains des instruments ont été sélectionnés pour permettre l'identification rapide de la composition du sol (une information pouvant nécessiter plus d'un mois pour Curiosity). Il s'agit d'obtenir dans un délai relativement court (les contraintes temporelles sont la durée de vie de l'astromobile, le temps de déplacement de celui-ci d'une zone à l'autre et l'arrivée de la mission chargée de ramener les échantillons sur Terre) 43 carottes de sol bien choisis :
La sonde spatiale embarque 23 caméras utilisées pour la navigation, les travaux scientifiques et la maintenance. L'astromobile emporte 19 caméras : neuf en couleurs pour ingénierie, trois dont deux en couleur pour filmer la phase de descente dans l'atmosphère et d'atterrissage et réaliser un atterrissage de précision, les deux caméras couleurs avec zoom de l'instrument Mastcam-Z, la caméra couleur de l'instrument SuperCam, les deux caméras couleurs de l'instrument SHERLOC, la caméra blanc et noir de l'instrument PIXL et la caméra noir et blanc de l'instrument MEDA). Le bouclier arrière emporte trois caméras couleur pour filmer le déploiement du parachute. L'étage de descente emporte une caméra couleur tournée vers le sol qui filme l'astromobile vu du dessus. L'hélicoptère Ingenuity emporte une caméra couleur qui fournit des images de la surface et une caméra noir et blanc pour la navigation.
La caméra principale est la Mastcam-Z. Il s'agit d'une version améliorée de la caméra équipant Curiosity car elle embarque un zoom permettant un grandissement x 3, abandonné en cours de développement pour son prédécesseur. La caméra effectue des images en couleurs panoramiques, tri-dimensionnelles et, grâce au zoom, peut effectuer des photos détaillées. Elle comprend deux objectifs distincts écartés de 24,2 centimètres qui permettent des photos stéréo et sont fixés au sommet d'un mât à deux mètres de hauteur. Le capteur CCD, identique à celui de Curiosity, dispose de 2 mégapixels (1600 x 1200). L'ensemble a une masse de 4 kilogrammes et consomme 17,4 watts. Le responsable scientifique de l'instrument est Jim Bell de l'université de l'Arizona. L'instrument est développé par Malin Space Science Systems.
Le zoom est un objectif 28-100 mm (grand angle à téléobjectif modéré) et l'ouverture est comprise entre f/8 et f/10 (téléobjectif). Le champ de vue est de 23° x 18° (grand angle) et de 6° x 5° (téléobjectif). Le pouvoir de résolution de la caméra est d'environ 1 millimètre dans la zone accessible par le bras télécommandé de l'astromobile et quelques centimètres à une distance de 100 mètres. Elle est équipée de 11 filtres étroits dans la bande spectrale comprise entre 400 et 1 000 nanomètres qui permettent de déterminer si les matériaux photographiés ont été altérés ou érodés et qui fournissent des informations importantes sur la composition des roches. Une paire de filtres permet d'effectuer des images du Soleil.
La caméra peut réaliser des films avec une vitesse de 4 images par seconde. Cette fréquence peut être augmentée en diminuant la définition. Cette fonction permet d'observer des phénomènes comme les tourbillons de poussière, le déplacement des nuages, les phénomènes astronomiques mais également le déroulement des opérations réalisées par l'astromobile telles que les déplacements, la collecte d'échantillon ou le stockage de ceux-ci.
Schéma d'une caméra Mascam-z
Cibles utilisées pour étalonner la caméra Mastcam-z
La SuperCam est une version fortement améliorée de l'instrument franco-américain ChemCam embarqué sur l'astromobile Curiosity. Elle utilise un laser et trois spectromètres pour analyser à distance la composition chimique des roches ciblées. Le laser pulsé tire sur la roche à analyser provoquant la vaporisation de sa couche superficielle et générant un plasma. L'optique de 110 mm utilisée pour viser la cible avec le laser, un télescope de type Schmidt-Cassegrain, permet de recueillir l'image renvoyée de l'étincelle de plasma, et de la transmettre par fibre optique aux spectromètres. L'instrument a été conçu et réalisé conjointement par le LANL américain et le CNES français. L'instrument est capable d'effectuer trois types de mesure :
SuperCam a une masse totale de 10,6 kg répartie entre le module optique logé dans le mât (5,6 kg), les spectromètres logés dans le corps de l'astromobile (4,8 kg) et les cibles utilisées pour étalonner l'instrument (0,2 kg). L'instrument en fonctionnement consomme 17,9 watts. Il génère un volume de données moyen de 4,2 mégabits par jour. L'instrument est développé par le Laboratoire national de Los Alamos qui fournit les spectromètres et l'institut de recherche en astrophysique et planétologie (IRAP) de l'université Paul Sabatier de Toulouse en France qui livre la partie optique ainsi que le laser (fourni par Thales) sous maîtrise d'œuvre de l'agence spatiale française (CNES). Le responsable scientifique est Roger Wiens de Los Alamos et son adjoint Sylvestre Maurice de l'IRAP.
Le radar RIMFAX (Radar Imager for Mars Subsurface Exploration) développé par un institut de recherche norvégien. Il permet de compléter les analyses effectuées par SuperCam qui ne peut étudier que la surface des roches. RIMFAX permet d'analyser les couches géologiques enfouies jusqu'à une profondeur de 500 mètres avec une résolution verticale comprise entre 15 et 30 centimètres. Il est constitué d'un radar qui émet dans des fréquences modifiables (comprise entre 150 et 1 200 mégahertz) pour tenir compte de la nature du terrain. L'instrument analyse les ondes réfléchies par les couches superficielles de la surface (jusqu'à 10 mètres de profondeur), ce qui permet de détecter la présence de glace, de roche, de sable et d'eau liquide. Ces sondages sont effectués au fur et à mesure de l'avancement de l'astromobile tous les 10 centimètres. L'instrument permet de déterminer l'épaisseur du régolithe, détecter les différentes strates superficielles du terrain situées sous la surface et associées aux structures qui en émergent, associer une section stratigraphique aux échantillons qui sont prélevés.
Chaque sondage produit 5 à 10 kilooctets de données. L'instrument est composé d'une antenne fixée sous le RTG et d'un boîtier électronique placé dans le corps de l'astromobile tout à l'arrière. Sa masse est de 3 kilogrammes et il consomme de 5 à 10 watts en fonctionnement. Le responsable scientifique de RIMFAX est le chercheur norvégien Svein-Erik Hamran qui est également un des deux responsables scientifiques du radar WISDOM embarqué à bord de l'astromobile ExoMars de l'Agence spatiale européenne qui doit atterrir sur Mars à la même époque que Mars 2020.
Le PIXL (Planetary Instrument for X-ray Lithochemistry) est un spectromètre de fluorescence des rayons X qui détermine les éléments chimiques présents dans un échantillon de roche à l'échelle d'un grain de sel (0,1 millimètre ou 100 microns) et grâce à une caméra associe cette composition à la texture fine de la roche. L'instrument est monté à l'extrémité du bras de l'astromobile. Le principe de fonctionnement repose sur l'émission d'un rayonnement X qui est focalisé par une optique constituée de millions de fibres optiques de manière à frapper l'échantillon à analyser sur un rayon réduit à 100 microns (0,1 millimètre). Le spectre des photons X renvoyés par la cible (fluorescence) est fourni par un détecteur à dérive en silicium (SDD). Pour pouvoir associer l'analyse spectrale effectuée à une texture donnée et localisée de la roche, une caméra co-alignée prend une image (26 × 36 millimètres) de la cible avec une résolution spatiale de 50 microns. Un petit projecteur de type DEL projette une grille visible sur les images prises pour fournir un cadre de référence. Pour réaliser l'analyse d'une roche, la tête de l'instrument est positionnée par le bras de l'astromobile à 2 centimètres de sa cible. Le capteur est positionné au-dessus de sa cible grâce à 6 petits vérins qui permettent de le déplacer lentement avec une très grande précision. Un spectre est obtenu en 5 à 10 secondes. En 10 à 20 minutes, l'instrument effectue l'analyse d'une centaine de particules de la taille d'un grain de sable. PIXL peut mesurer les 16 éléments chimiques couramment détectés par ce type d'instrument mais également V, Co, Cu, Ga, As, Rb, Sr, Y, Zr et Ce. Il peut détecter un élément présent à hauteur de 10 parties par million.
PIXL envoie environ 16 mégabits de données à chaque analyse. L'instrument a une masse totale d'environ 7 kilogrammes dont 4,3 kg pour le capteur monté au bout du bras, 2,6 kg pour l'électronique installée dans le corps de l'astromobile et 0,15 kg pour les cibles utilisées pour étalonner PIXL. L'ensemble consomme 25 watts lorsqu'il est mis en œuvre. La responsable scientifique de l'instrument est Abigail Allwood du Jet Propulsion Laboratory. Le développement de l'instrument est également effectué sous la maîtrise d'œuvre de cet établissement de la NASA.
Le spectromètre SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) est un instrument situé à l'extrémité du bras de l'astromobile qui fournit des images à faible échelle et utilise un laser ultraviolet pour déterminer la minéralogie et la composition organique du sol martien afin de déterminer si ceux-ci ont été altérés par un environnement aqueux et s'ils contiennent des indices d'une vie microbienne passée. Il s'agit du premier spectromètre Raman œuvrant à la surface de Mars. L'instrument met en œuvre deux types d'effet. D'une part la fluorescence qui permet d'identifier les formes condensées du carbone et les composés aromatiques présents à hauteur d'une partie par million avec une résolution spatiale de 100 microns. D'autre part la diffusion Raman permet l'identification et la classification des composés aromatiques et aliphatiques présents avec une concentration comprise entre 1 % et 1 partie par 10000 avec une résolution spatiale de 100 microns. La diffusion Raman permet également l'identification et la classification des minéraux issus d'une chimie aqueuse dans des grains dont la taille peut descendre jusqu'à 20 microns. L'instrument utilise un laser émettant un faisceau large de 50 microns dans l'ultraviolet (248,6 nanomètres) et une caméra dont la résolution spatiale est de 30 microns. Un système d'autofocus permet de positionner la tête de l'instrument à la distance adéquate de l'échantillon à analyser sans avoir à déplacer le bras. La caméra peut être également utilisée pour étudier les parois du forage. Un miroir pivotant permet de déplacer le point d'impact du laser et ainsi d'analyser de manière systématique une région de 0,7 × 0,7 centimètre. La caméra fournit le contexte avec un champ de vue de 2,3 × 1,5 centimètres.
L'instrument SHERLOC inclut également la caméra WATSON pouvant prendre des images à faible distance jusqu'à l'infini qui est utilisée aussi bien pour effectuer des vérifications d'ordre technique qu'à des fins scientifiques. WATSON dérive de la caméra MAHLI installée sur le bras de l'astromobile Curiosity. À l'avant du rover Perseverance est fixée une cible permettant d'étalonner à la fois la caméra et le fonctionnement du spectromètre grâce à six échantillons notamment de roches. La cible comprend également six échantillons de tissus (vectran, dacron, teflon...) qui serviront à effectuer des opérations d'étalonnage et à mesurer la résistance dans le temps de futures combinaisons spatiales. La masse totale de l'instrument est de 4,7 kilogrammes répartis entre le capteur situé en bout de bras (3,11 kg) et l'électronique située dans le corps de l'astromobile (1,61 kg). Le spectromètre consomme 48,8 watts lorsqu'elle fonctionne dont 32,2 watts au niveau du détecteur. Le responsable scientifique est Luther Beegle du Jet Propulsion Laboratory.
Comme Curiosity, Mars 2020 emporte une station météorologique développée par la même équipe espagnole baptisée MEDA (Mars Environmental Dynamics Analyzer). Celle-ci est équipée de capteurs mesurant six paramètres atmosphériques - température au sol, température de l'air, pression, humidité, direction et vitesse des vents et rayonnement dans différentes bandes spectrales en ultraviolet, visible et infrarouge - ainsi que les propriétés optiques de la poussière, caractéristiques de la poussière. L'ensemble formé par les capteurs et l'électronique associée représente une masse de 5,5 kilogrammes et consomme jusqu'à 17 watts. Les capteurs sont répartis à différents endroits de l'astromobile :
Un des deux capteurs de vent WS (vitesse, direction) fixé sur le mât.
A la périphérie et sur le dessus de ce boitier fixé sur le pont de l'astromobile se trouvent 16 photodiodes mesurant la poussière présente dans l'atmosphère (capteur RDS). Au centre du boitier l'optique de la caméra SkyCam. Le tube noir à gauche du boitier est l'orifice du capteur de pression PS.
L'astromobile emporte également l'expérience technologique MOXIE (Mars OXygen ISRU Experiment). Cet équipement expérimental de type ISRU (c'est-à-dire utilisation de ressources in situ) teste la production d'oxygène à partir du dioxyde de carbone omniprésent dans l'atmosphère martienne. Ce type d'équipement, s'il devient opérationnel, permet d'envisager des missions martiennes habitées ou robotiques qui reconstituent leurs réserves d'oxydant à partir des ressources locales avant de décoller vers la Terre. L'oxygène récupéré peut également servir à constituer les réserves utilisées par les futurs astronautes martiens. L'appareil doit également permettre de définir la taille et la morphologie des grains de poussière en suspension dans l'atmosphère.
L'oxygène est produit par MOXIE en collectant le dioxyde de carbone (CO2) de l'atmosphère et en cassant cette molécule pour produire de l'oxygène (O2) d'une part et du monoxyde de carbone (CO) d'autre part. L'atmosphère martienne pénètre dans l'instrument, est filtrée et compressée à 1 bar. La molécule de dioxyde de carbone est "cassée" dans le module SOXE (Solid OXide Electrolyzer) par électrochimie. La température est portée à 800 °C. Pour produire de l'oxygène, MOXIE doit fonctionner 2 heures en consommant 300 watts. Il produit 10 grammes d'oxygène par heure. Le responsable scientifique de l'expérience est Michael Hecht du Massachusetts Institute of Technology.
Principaux composants de MOXIE.
L'instrument MOXIE est installé dans l'astromobile.
L'astromobile emporte un petit hélicoptère expérimental MHS (Mars Helicopter Scout), baptisé Ingenuity, qui est le premier engin volant utilisé sur une autre planète. Il ne joue aucun rôle dans la réalisation des objectifs scientifiques de la mission. Il s'agit d'un démonstrateur technologique qui doit permettre de vérifier le potentiel de ce type de véhicule dans un environnement peu propice au fonctionnement d'un engin volant du fait de l'atmosphère extrêmement ténue (portance faible), de l'éloignement de Mars qui ne permet pas un contrôle par un téléopérateur et des températures extrêmes.
Pesant environ 1,8 kilogramme l'hélicoptère effectuera plusieurs vols de reconnaissance en début de mission pour tester ses capacités puis sera abandonné. L'hélicoptère est fixé sous l'astromobile avant son déploiement sur le sol de Mars. Il se déplace dans les airs grâce à deux rotors bipales tournant en sens contraire. Leur vitesse de rotation est comprise entre 2 400 et 2 900 tours par minute soit 10 fois celle d'un hélicoptère sur Terre, pour pouvoir être efficace dans l'atmosphère particulièrement peu dense de Mars (équivalent à l'atmosphère terrestre à une altitude de 25 kilomètres). Le fuselage de l'hélicoptère a le diamètre d'un ballon de basket (13,6 x 19,5 cm). Le rotor mesure 1,2 m d'une extrémité à l'autre et la hauteur totale de l'hélicoptère est de 0,8 m. Quatre pieds longs de 0,384 m maintiennent le corps de l'hélicoptère à 0,13 m au-dessus du sol.
L'hélicoptère martien est propulsé par l'énergie électrique fournie par une batterie lithium-ion. Celle-ci est rechargée par des cellules solaires qui permettent en une journée d'accumuler une énergie suffisante pour effectuer un vol de 90 secondes (puissance moyenne consommée en vol : 350 Watts). Des résistances chauffantes maintiennent les systèmes à une température compatible avec les contraintes de fonctionnement.
L'hélicoptère emporte une caméra de navigation qui fournit des images en blanc et noir et une caméra couleur à haute résolution pour effectuer des prises d'images du terrain et ainsi remplir les objectifs qui lui sont assignés. Compte tenu du délai des échanges avec la Terre (16 minutes pour un échange dans la configuration Terre-Mars la plus favorable), l'hélicoptère vole de manière autonome à partir d'instructions transmises avant le vol. Un système radio embarqué reçoit ces commandes et transmet les images et télémesures via les équipements radio de l'astromobile.
Seule l'atterrisseur Insight a à ce jour pu enregistrer des sons sur Mars. Deux missions de la NASA équipées d'un système d'enregistrement des sons avaient été lancées par le passé : la sonde spatiale Mars Polar Lander lancée 1999 a été perdue du fait d'une erreur de conception peu avant son atterrissage sur Mars tandis que le microphone de Phoenix, qui s'était posée sur un des pôles de Mars en 2008, n'a jamais pu fonctionner.
La mission Mars 2020 emporte deux microphones :
L'instrument, qui ne fait pas partie de la charge utile scientifique, a été financé par l'association The Planetary Society et est identique au modèle lancé en 1999 déjà sponsorisé par cette association. Constitué principalement d'une carte électronique, il pèse environ 50 grammes.
Mars 2020 est la première étape du programme devant ramener les échantillons sur Terre. La deuxième partie de ce programme, qui constitue un défi technique, n'est toujours pas financée courant 2020.
Selon le scénario détaillé en avril 2020, deux sondes spatiales développées respectivement par la NASA et l'Agence spatiale européenne doivent être lancées en 2026 dans le but de récupérer les échantillons de sol déposés sur Mars par l'astromobile Perseverance et les ramener sur Terre en 2031. En 2018 la phase de spécifications des deux missions démarre à l'Agence spatiale européenne et à la NASA. Airbus Defence and Space a été sélectionné par l'ESA pour le développement de la mission qui lui est impartie. Des fonds sont débloqués pour réaliser ces études mais les deux agences n'ont pas le budget pour les implémenter.
Ces deux missions chargées de la suite du programme sont, d'une part, SRL qui doit aller chercher les échantillons sur le sol martien (rover SFR) et les ramener sur une orbite martienne (fusée MAV) et, d'autre part, l'orbiteur martien ERO qui doit assurer le support des opérations au sol (télécommunications) depuis l'orbite martienne, récupérer le container contenant les échantillons à la suite d'un rendez-vous en orbite martienne puis revenir sur Terre et larguer dans l'atmosphère terrestre la capsule contenant le container. Cette dernière doit se poser en douceur sur un site terrestre sélectionné. La planification du projet constitue un des aspects les plus complexes de ces deux missions :
L'ensemble de ces contraintes aboutit à une campagne 26-26-31 : ces trois chiffres correspondant respectivement aux dates de lancement des deux engins (2026) et à l'année de l'arrivée de la capsule d'échantillons sur Terre (2031).
La mission Sample Retrieval Lander (SRL), développée par la NASA, consiste à poser sur Mars un engin spatial dont l'objectif final est de ramener sur l'orbite martienne un container des échantillons de sol. Pour remplir cet objectif la sonde spatiale transporte d'une part un petit rover baptisé SFR (Sample Fetch Rover) qui va chercher les tubes contenant les échantillons de sol là où ils ont été déposés par l'astromobile Perseverance de Mars 2020 et d'autre part une fusée MAV (Mars Ascent Vehicle) à propergol solide qui doit ramener les échantillons sur une orbite basse martienne. Le déroulement de cette mission est le suivant :
L'atterrisseur SRL se pose sur le sol de Mars
Les tubes sont chargés dans la fusée MAV
La fusée MAV décolle du sol pour rejoindre l'orbite basse
Earth Return Orbiter (ERO), développé par l'Agence spatiale européenne, est un engin spatial qui doit se placer sur une orbite basse martienne. Il sert de relais de télécommunications durant les opérations au sol de SRL puis récupère le container amené en orbite par la fusée MAV. Après avoir quitté l'orbite martienne il regagne la Terre. Arrivé à proximité de celle-ci en 2031, il largue la capsule contenant les échantillons de sol martien qui vient se poser en douceur à la surface de la Terre. Le déroulement détaillé de cette mission est le suivant :
Comme pour les autres missions d'exploration du système solaire de la NASA, l'astromobile Perseverance embarque des puces en silicium sur lesquelles ont été gravés à l'aide d'un faisceau d'électrons les noms de personnes désireuses d'y figurer. Dans le cadre de l'opération Send your name (Envoyez votre nom) 10 932 295 personnes de tous les pays ont fourni leurs coordonnées (nom/prénom, pays, code postal) sur le site de la NASA et ont pu imprimer une carte d'embarquement symbolique pour Mars à leur nom. Les trois puces gravées sont fixées sur une plaque en aluminium elle-même vissée sur l'arceau arrière de la structure de l'astromobile. Elles sont situées dans le champ de vue des caméras du mât. Les puces contiennent également les 155 textes des finalistes ayant concouru pour baptiser l'astromobile.
La plaque sur laquelle sont fixées les trois puces gravées avec les noms des participants à l'opération Send your name.
Carte d'embarquement Mars 2020.
NASA :
Films tournés par les caméras de Mars 2020 durant la descente vers le sol martien.
Animation montrant la descente de la sonde spatiale jusqu'au sol de Mars
Animation présentant les instruments de l'astromobile Perseverance.
Animation montrant la collecte d'un échantillon du sol de Mars.
Vidéo des tests de déploiement de l'hélicoptère sur le sol de Mars.
Animation montrant un vol de l'hélicoptère.